Abstract
LetK p(u1, ..., up) be the completep-partite graph whoseith vertex class hasu i vertices (l≤i≤p). We show that the theorem of Erdős and Stone can be extended as follows. There is an absolute constant α>0 such that, for allr≥1, 0<γ<1 and 0<ε≤1/r, every graphG=G n of sufficiently large order |G|=n with at least
edges contains aK r+1(s,m,...,m,l), wherem=m(n)=[α(1−γ)(logn)/logr],s=s(n)=[α(1−γ)(logn)/rlog(1/ε)], andl= l(n) ⌊αɛ1+γ/2 n γ ⌋. The above result strengthens a sharpening of the Erdős-Stone theorem due to Bollobás, Erdős, and Simonovits, which guaranteed the existence of aK r+1(s,...,s) inG. The strengthening in our result lies in the fact thatm above is independent of ε andl can be demanded to be almost the first power ofn. A related conjecture extending the Chvátal-Szemerédi sharpening of the Erdős-Stone theorem is presented.
This is a preview of subscription content, access via your institution.
References
- [1]
B. Bollobás:Extremal Graph Theory, Academic Press, London 1978,xx+488 pp.
- [2]
B. Bollobás, andP. Erdős: On the structure of edge graphs,Bull. London Math. Soc. 5 (1973), 317–321.
- [3]
B. Bollobás, P. Erdős, andM. Simonovits: On the structure of edge graphs II.,J. London Math. Soc. 12 (1976), 219–224.
- [4]
V. Chvátal, andE. Szemerédi: On the Erdős-Stone theorem,J. London Math. Soc. 23 (1981), 207–214.
- [5]
V. Chvátal, andE. Szemerédi Notes on the Erdős-Stone theorem,Annals of Discrete Math. 17 (1983), 183–190.
- [6]
P. Erdős, andA. H. Stone: On the structure of linear graphs,Bull. Amer. Math. Soc. 52, 1089–1091.
- [7]
E. Szemerédi: Regular partitions of graphs, inProblèmes en Combinatoire et Théorie des Graphes, Proc. Colloque Inter. CNRS (Bermond, J.-C., Fournier, J.-C., Las Vergnas, M., Sotteau, D., eds.), CNRS, Paris 1978, 399–401.
Author information
Affiliations
Rights and permissions
About this article
Cite this article
Bollobás, B., Kohayakawa, Y. An extension of the Erdős-Stone theorem. Combinatorica 14, 279–286 (1994). https://doi.org/10.1007/BF01212976
Received:
Issue Date:
AMS subject classification code (1991)
- 05 C 35