A statistical theorem of set addition

This is a preview of subscription content, access via your institution.


  1. [1]

    I. Z. Ruzsa: Arithmetical progressions and the number of sums, to appear inPeriodica Math. Hung.

  2. [2]

    I. Z. Ruzsa: Generalized arithmetical progressions and sum sets, in preparation.

  3. [3]

    E. Szemerédi: On sets of integers containing nok elements in arithmetic progression,Acta Arithmetica 27 (1975), 299–345.

    Google Scholar 

  4. [4]

    E. Szemerédi: Regular partitions of graphs,Problèmes Combinatories at Theorie des Graphes, (Ed. J-C. Bermond, et al.), CNRS aris, (1978), 399–401.

  5. [5]

    E. Szemerédi: no title, in preparation.

Download references

Author information



Additional information

Research supported by Hungarian NFSR grant 1901.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Balog, A., Szemerédi, E. A statistical theorem of set addition. Combinatorica 14, 263–268 (1994). https://doi.org/10.1007/BF01212974

Download citation

AMS subject classification code (1991)

  • 11 B 05
  • 05 B 10
  • 11 B 75