Minimally 3-connected isotropic systems

Abstract

Isotropic systems are structures which unify some properties of 4-regular graphs and selfdual properties of binary matroids, such as connectivity and minors. In this paper, we find the minimally 3-connected isotropic systems. This result implies the binary part Tutte's wheels and whirls theorem.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    L. Allys: 3-connexité dans les systèmes isotropes, Thèse, Université du Maine (1992).

  2. [2]

    A. Bouchet: Reducing prime graphs and recognizing circle graphs,Combinatorica 7 (1987), 243–254.

    Google Scholar 

  3. [3]

    A. Bouchet: Isotropic systems,European J. of Combin. 8, (1987), 231–244.

    Google Scholar 

  4. [4]

    A. Bouchet: Digraph decomposition and Eulerian systems,SIAM J. Alg. Disc. Meth. 8 (1987), 323–337.

    Google Scholar 

  5. [5]

    A. Bouchet: Graphic representations of isotropic systems,J. Combinatorial Theory B 45 (1988), 58–76.

    Google Scholar 

  6. [6]

    A. Bouchet: Connectivity of isotropic systems,Annals of the New York Academy of Sciences 555 (1989), 81–93.

    Google Scholar 

  7. [7]

    W. Cunningham andJ. Edmonds: A combinatorial decomposition theory,Canad. J. Math. XXXII (1982), 734–765.

    Google Scholar 

  8. [8]

    W. Cunningham: Decomposition of directed graphs,SIAM J. Alg. Disc. Meth. 3 (1987), 214–218.

    Google Scholar 

  9. [9]

    W. Tutte: Connectivity in matroids,Canad. J. Math. 18 (1966), 1301–1324.

    Google Scholar 

  10. [10]

    D. J. A. Welsh: Matroid Theory,London Math. Soc. Monographs,8, Academic Press, New York, 1976.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Allys, L. Minimally 3-connected isotropic systems. Combinatorica 14, 247–262 (1994). https://doi.org/10.1007/BF01212973

Download citation

AMS subject classification code (1991)

  • 05 B 35
  • 05 C 40