Skip to main content
Log in

Relative equilibria of Hamiltonian systems with symmetry: Linearization, smoothness, and drift

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Summary

A relative equilibrium of a Hamiltonian system with symmetry is a point of phase space giving an evolution which is a one-parameter orbit of the action of the symmetry group of the system. The evolutions of sufficiently small perturbations of a formally stable relative equilibrium are arbitrarily confined to that relative equilibrium's orbit under the isotropy subgroup of its momentum. However, interesting evolution along that orbit, here called drift, does occur. In this article, linearizations of relative equilibria are used to construct a first order perturbation theory explaining drift, and also to determine when the set of relative equilibria near a given relative equilibrium is a smooth symplectic submanifold of phase space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Abraham and J. E. Marsden.Foundations of Mechanics, 2nd ed. Addision-Wesley, Reading, MA, 1978.

    Google Scholar 

  2. J. F. Adams.Lectures on Lie Groups. University of Chicago Press, Chicago, 1969.

    Google Scholar 

  3. J. M. Arms, J. E. Marsden, and V. Moncrief. Bifurcations of momentum mappings.Comm. Math. Phys., 78:455–478, 1981.

    Google Scholar 

  4. V. I. Arnold.Mathematical Methods of Classical Mechanics. Springer-Verlag, Berlin, 1978.

    Google Scholar 

  5. T. Bröcker and T. torn Dieck.Representations of Compact Lie Groups. Springer-Verlag, Berlin, 1985.

    Google Scholar 

  6. N. Burgoyne and R. Cushman. The decomposition of a linear mapping.Linear Algebra Appl., 8:515–519, 1974.

    Google Scholar 

  7. M. J. Field. Equivariant dynamical systems.Trans. Am. Math. Soc., 259:185–205, 1980.

    Google Scholar 

  8. R. Grossman, K. S. Krishnaprasad, and J. E. Marsden. The dynamics of two coupled rigid bodies. In M. Levi and F. Salam, editors,Dynamical Systems Approaches to Nonlinear Problems in Systems and Circuits, pages 373–378. SIAM, Philadelphia, 1988.

    Google Scholar 

  9. V. Guillemin and S. Sternberg.Symplectic Techniques in Physics. Cambridge University Press, Cambridge, 1984.

    Google Scholar 

  10. R. Hermann.Differential Geometry and the Calculus of Variations. Interdisiplinary Mathematics, vol. 17, 2nd ed., Math Sci Press, Brookline, MA, 1977.

    Google Scholar 

  11. M. W. Hirsh and S. Smale.Differential Equations, Dynamical Systems, and Linear Algebra. Academic Press, New York, 1974.

    Google Scholar 

  12. K. Hoffman and R. Kunze.Linear Algebra, 2nd ed. Prentice-Hall, 1971.

  13. D. Holm, J. E. Marsden, T. Ratiu, and A. Weinstein. Stability of rigid body motion using the energy-Casimir method. In J. E. Marsden, editor,Fluids and Plasmas: Geometry and Dynamics, Contemporary Mathematics 28. AMS, Providence, RI, 1984.

    Google Scholar 

  14. M. Krupa. Bifurcations of relative equilibria.SIAM J. Math. Anal, 21:1453–1486, 1990.

    Google Scholar 

  15. J. B. Marion.Classical Dynamics of Particles and Systems, 2nd ed. Academic Press, New York, 1970.

    Google Scholar 

  16. J. E. Marsden.Lectures on Geometric Methods in Mathematical Physics. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 37. SIAM, Philadelphia, PA, 1981.

    Google Scholar 

  17. J. E. Marsden, R. Montgomery, and T. Ratiu. Reduction, symmetry, and phases in mechanics.Mem. Amer. Math. Soc., 88, 1990.

  18. J. E. Marsden and T. S. Ratiu.Introduction to Mechanics and Symmetry. Springer-Verlag, Berlin, 1994.

    Google Scholar 

  19. J. E. Marsden, J. C. Simo, D. Lewis, and T. A. Posbergh. Block diagonalization and the energy-momentum method. In J. E. Marsden, P. S. Krishnaprasad, and J. C. Simo, editors,Dynamics and Control of Multibody Systems. Contemporary Mathematics, vol. 97, pages 297–313. AMS, Providence, RI, 1989.

    Google Scholar 

  20. J. E. Marsden and A. Weinstein. Reduction of symplectic manifolds with symmetry.Rep. Math. Phys., 5:121–130, 1974.

    Google Scholar 

  21. K. R. Meyer and G. R. Hall.Introduction to Hamiltonian Dynamical Systems and the n-Body Problem. Applied Mathematical Sciences, Vol. 90. Springer-Verlag, Berlin, 1991.

    Google Scholar 

  22. J. A. Montaldi, R. M. Roberts, and I. N. Stewart. Periodic solutions near equilibria of symmetric Hamiltonian systems.Philos. Trans. Roy. Soc. London Ser. A, 325:237–293, 1988.

    Google Scholar 

  23. J. Moser. On the theory of quasiperiodic motions.SLAM Rev., 8:145–172, 1966.

    Google Scholar 

  24. J. Moser. Convergent series expansions for quasi-periodic motions.Math. Ann., 169:136–176, 1967.

    Google Scholar 

  25. G. W. Patrick.Two axially symmetric coupled rigid bodies: relative equilibria, stability, bifurcations, and a momentum preserving symplectic integrator. Ph.D. thesis, University of California at Berkeley, 1991.

  26. G. W. Patrick. Relative equilibria in hamiltonian systems: The dynamic interpretation of nonlinear stability on the reduced phase space.J. Geom. Phys., 9:111–119, 1992.

    Google Scholar 

  27. G. W. Patrick. Dynamics near stable relative equilibria at non-generic momenta: a numerical investigation. Fields Institute Communications, 1993. Also Technical Report TRE-94-8, Department of Mathematics and Statistics, University of Saskatchewan. Available by remote login to math.usask.ca using user-id info.

  28. J. Simo, D. Lewis, and J. E. Marsden, Stability of relative equilibria. Part I: The reduced energy momentum method.Arch. Rational Mech. Anal, 115:15–59, 1991.

    Google Scholar 

  29. J. Simo, T. Posberg, and J. E. Marsden. Stability of coupled rigid body and geometrically exact rods: Block diagonalization and the energy-momentum method.Phys. Rep., 193:280–360, 1990.

    Google Scholar 

  30. S. Smale. Topology and mechanics. II. The planar n-body problem.Invent. Math., 11:45–64, 1970.

    Google Scholar 

  31. A. Weinstein.Lectures on Symplectic Manifolds, Regional Conference Series in Mathematics, AMS, Vol. 29. AMS, Providence, RI, 1977.

    Google Scholar 

  32. R. W. Wolverton, editor.Flight Performance Handbook for Orbital Operations, 2nd ed. Wiley, New York, 1963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Juergen Scheurle

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patrick, G.W. Relative equilibria of Hamiltonian systems with symmetry: Linearization, smoothness, and drift. J Nonlinear Sci 5, 373–418 (1995). https://doi.org/10.1007/BF01212907

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01212907

Key words

Navigation