Skip to main content
Log in

Sufficient subalgebras and the relative entropy of states of a von Neumann algebra

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A subalgebraM 0 of a von Neumann algebraM is called weakly sufficient with respect to a pair (φ,ω) of states if the relative entropy of φ and ω coincides with the relative entropy of their restrictions toM 0. The main result says thatM 0 is weakly sufficient for (φ,ω) if and only ifM 0 contains the Radon-Nikodym cocycle [Dφ,Dω] t . Other conditions are formulated in terms of generalized conditional expectations and the relative Hamiltonian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Accardi, L., Cecchini, C.: Conditional expectation in von Neumann algebras and a theorem of Takesaki. J. Funct. Anal.45, 245–273 (1982)

    Google Scholar 

  2. Araki, H.: Relative Hamiltonian for faithful normal states of a von Neumann algebra. Publ. Res. Inst. Math. Sci.9, 165–209 (1973)

    Google Scholar 

  3. Araki, H.: Recent developments in the theory of operator algebras and their significance in theoretical physics. Symposia Math., XX, 395–424. New York: Academic Press 1976

    Google Scholar 

  4. Araki, H.: Relative entropy of states of von Neumann algebras. I, II. Publ. Res. Inst. Math. Sci.11, 809–833 (1976) and13, 173–192 (1977)

    Google Scholar 

  5. Araki, H., Masuda, T.: Positive connes andL p-spaces for von Neumann algebras. Publ. Res. Inst. Math. Sci.18, 339–411 (1982)

    Google Scholar 

  6. Connes, A.: Une classification des facteurs de type III. Ann. Sci. Ec. Norm. Supér.6, 133–252 (1973)

    Google Scholar 

  7. Csiszár, I.: Information type measure of difference of probability distributions and indirect observations. Stud. Sci. Math. Hung.2, 299–318 (1967)

    Google Scholar 

  8. Davis, C.: A Schwarz inequality for convex operator functions. Proc. Am. Math. Soc.8, 42–44 (1957)

    Google Scholar 

  9. Dunford, N., Schwartz, J.T.: Linear operators. Part II. New York: Interscience 1958

    Google Scholar 

  10. Emch, G.G.: Algebraic methods in statistical mechanics and quantum field theory. New York: Wiley 1972

    Google Scholar 

  11. Gudder, S., Merchand, J.P.: Noncommutative probability on von Neumann algebras. J. Math. Phys.13, 799–806 (1972)

    Google Scholar 

  12. Halmos, P.R., Savage, L.J.: Application of the Radon-Nikodym theorem to the theory of sufficient statistics. Ann. Math. Stat.20, 225–241 (1949)

    Google Scholar 

  13. Hiai, F., Ohya, M., Tsukada, M.: Sufficiency, KMS condition and relative entropy in von Neumann algebras. Pac. J. Math.96, 99–109 (1981)

    Google Scholar 

  14. Hiai, F., Ohya, M., Tsukada, M.: Sufficiency and relative entropy in *-algebras with applications in quantum systems. Pac. J. Math.107, 117–140 (1983)

    Google Scholar 

  15. Holevo, A.S.: Some estimates for the amount of information transmittable by a quantum communication channel (in Russian). Probl. Peredachi Inf.9, 3–11 (1973)

    Google Scholar 

  16. Holevo, A.S.: Investigations in the general theory of statistical decisions. Am. Math. Soc. Proc. Steklov Inst. Math.124 (1978)

  17. Kato, T.: Perturbation theory for linear operators. Berlin, Heidelberg, New York: Springer 1966

    Google Scholar 

  18. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat.22, 79–86 (1951)

    Google Scholar 

  19. Lieb, E.H.: Convex trace functions and the Wigner-Yanase-Dyson conjecture. Adv. Math.11, 267–288 (1973)

    Google Scholar 

  20. Lindblad, G.: Entropy, information and quantum measurement. Commun. Math. Phys.33, 305–322 (1973)

    Google Scholar 

  21. Lindblad, G.: Expectation and entropy inequalities for finite quantum systems. Commun. Math. Phys.39, 111–119 (1974)

    Google Scholar 

  22. Petz, D.: A dual in von Neumann algebras with weights. Q. J. Math. Oxf.35, 475–483 (1984)

    Google Scholar 

  23. Petz, D.: Properties of quantum entropy, quantum probability and applications II. Accardi, L., von Waldenfels, W. (eds.). Lecture Notes in Mathematics. Vol. 1136, pp. 428–441. Berlin, Heidelberg, New York: Springer 1985

    Google Scholar 

  24. Petz, D.: Quasi-entropies for states of a von Neumann algebra. Publ. Res. Inst. Math. Sci.21, 787–800 (1985)

    Google Scholar 

  25. Raggio, G.A.: Comparison of Uhlmann's transition probability with the one induced by the natural positive cone of a von Neumann algebra in standard form. Lett. Math. Phys.6, 233–236 (1982)

    Google Scholar 

  26. Strătilă, S., Zsidó, L.: Lectures on von Neumann algebras. Tunbridge Wells: Abacuss Press 1979

    Google Scholar 

  27. Strătilă, S.: Modular theory of operator algebras. Tunbridge Wells: Abacus Press 1981

    Google Scholar 

  28. Strasser, H.: Mathematical theory of statistics. Berlin: de Gruyter 1985

    Google Scholar 

  29. Takesaki, M.: Conditional expectations in von Neumann algebras. J. Funct. Anal.9, 306–321 (1972)

    Google Scholar 

  30. Umegaki, H.: Conditional expectations in an operator algebra IV (entropy and information). Kodai Math. Sem. Rep.14, 59–85 (1962)

    Google Scholar 

  31. Wolfe, J.C., Emch, G.G.:C*-algebraic formalism for coarse graining. I. General theory. J. Math. Phys.15, 1343–1347 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Araki

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petz, D. Sufficient subalgebras and the relative entropy of states of a von Neumann algebra. Commun.Math. Phys. 105, 123–131 (1986). https://doi.org/10.1007/BF01212345

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01212345

Keywords

Navigation