Skip to main content
Log in

Liapunov functions and stability criteria for nonlinear systems with multiple critical eigenvalues

  • Published:
Mathematics of Control, Signals and Systems Aims and scope Submit manuscript

Abstract

Efficient criteria are derived via explicit construction of Liapunov functions for local asymptotic stability inference of nonlinear systems, whose linearizations possessc ≥ 2 critical modes at an equilibrium point. The stability criteria are obtained in the context of two novel notions, relaxed definiteness and relaxed stability. A real symmetricc×c matrixQ isrelaxed negative definite ifw TQw<0 for any 0≠wεℜ c+ , ℜ+=[0, ∞); a matrixR isrelaxed stable if there is aP>0 such thatPR+R TP is relaxed negative definite. The construction leads to some characterizations of the nonlinear system's local structure,in the sense of Liapunov, and the so-called stability characteristic matrices and tensors. It is shown that a nonlinear system with multiple critical modes is locally asymptotically stable generically if the stability characteristic matrix is relaxed stable and less generically if the stability characteristic tensor is trivial or degenerate in certain way and the perturbed stability characteristic matrix is relaxed stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. H. Abed and J.-H. Fu, Local feedback stabilization and bifurcation control, I. Hopf bifurcation,Systems Control Lett.,7 (1986), 11–17.

    Google Scholar 

  2. E. H. Abed and J.-H. Fu, Local feedback stabilization and bifurcation control, II. Stationary bifurcation,Systems Control Lett.,8 (1987), 467–473.

    Google Scholar 

  3. D. J. Allwright and A. I. Mees, Lyapunov method applied to the Hopf bifurcation,J. London Math. Soc. (2),20 (1979), 293–299.

    Google Scholar 

  4. V. I. Arnold,Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York, 1983.

    Google Scholar 

  5. A. Bacciotti,Local Stabilizability of Nonlinear Control Systems, World Scientific, Singapore, 1992.

    Google Scholar 

  6. W. P. Dayawansa, Recent advances in the stabilization of stabilization problem for low-dimensional systems,Proc. IFAC Nonlinear Control Systems Design Symposium (NOLCOS '92), M. Fliess, ed., 24–26 June 1992, Bordeaux, pp. 1–8.

  7. R. M. Evan-Iwanowski,Resonance Oscillations in Mechanical Systems, Elsevier, Amsterdam, 1976.

    Google Scholar 

  8. J.-H. Fu, Smooth feedback stabilizability of nonlinear systems,Control Theory Adv. Technol.,6(4) (1990), 559–571.

    Google Scholar 

  9. J.-H. Fu, Liapunov functions and stability criteria for nonlinear systems with multiple critical eigenvalues (on them-pair case),Proc. IF AC Nonlinear Control Systems Design Symposium (NOLCOS '92), M. Fliess, ed., Bordeaux, 24–26 June 1992, pp. 666–671.

  10. J.-H. Fu, On feedback stabilization of nonlinear systems,Proc. 1993 IEEE Regional Conference on Aerospace Control Systems, Thousand Oaks, CA, 25–27 May 1993, pp. 488–492.

  11. J.-H. Fu and E. H. Abed, Families of Liapunov functions for nonlinear systems in critical cases,IEEE Trans. Automat. Control,38(1) (1993), 3–16.

    Google Scholar 

  12. J. Guckenheimer and P. Holmes,Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields, Springer-Verlag, New York, 1983.

    Google Scholar 

  13. K. Hussyin,Multiple Parameter Stability Theory and Its Applications, Oxford University Press, New York, 1986.

    Google Scholar 

  14. G. Iooss and D. D. Joseph,Elementary Stability and Bifurcation Theory, Springer-Verlag, New York, 1976.

    Google Scholar 

  15. L. G. Khazin and E. E. Shnol,Stability of Critical Equilibrium States, Manchester University Press, Manchester, 1991.

    Google Scholar 

  16. N. N. Krasovskii,Stability of Motion, Stanford University Press, Stanford, CA, 1963. (Translation, by J. L. Brenner, of the 1959 Russian edition.)

    Google Scholar 

  17. C.-F. Kuen, Analysis and Applications of Strong D-Stability, Master Thesis, Department of Electrical Engineering, University of Maryland, College Park, MD, 1987.

    Google Scholar 

  18. V. Lakshmikantham, V. M. Matrosov, and S. Sivasundaram,Vector Liapunov Functions and Stability Analysis of Nonlinear Systems, Kluwer, Dordrecht, 1991.

    Google Scholar 

  19. J. P. LaSalle and S. Lefschetz,Stability by Liapunov's Direct Method with Applications, Academic Press, New York, 1961.

    Google Scholar 

  20. D.-C. Liaw, Feedback Stabilization via Center Manifold Reduction with Application to Tethered Satellites, Ph.D. Dissertation, Department of Electrical Engineering, University of Maryland, College Park, MD, 1990.

    Google Scholar 

  21. D.-C. Liaw and E. H. Abed, Stabilization of tethered satellites during station keeping,IEEE Trans. Automat. Control,35(11) (1990), 1186–1196.

    Google Scholar 

  22. A. M. Lyapunov, Problème général de la stabilité du mouvement,Ann. Fac. Sci. Toulouse,9 (1907), 203–474. Reprint, Annals of Mathematics Studies, No. 17, Princeton University Press, Princeton, NJ, 1947.

    Google Scholar 

  23. I. Malkin,Some Basic Theorems of the Stability of Motion in the Critical Cases, AMS Translations, No. 38, American Mathematical Society, Providence, RI, 1958.

    Google Scholar 

  24. A. I. Mees and L. O. Chua, The Hopf bifurcation theorem and its applications to nonlinear oscillations in circuits and systems,IEEE Trans. Circuits and Systems,26 (1979), 235–254.

    Google Scholar 

  25. R. H. Middleton, Trade-offs in linear control system design,Automatica,27(2) (1991), 281–292.

    Google Scholar 

  26. N. Minorsky,Nonlinear Oscillations, Van Nostrand, Princeton, NJ, 1962.

    Google Scholar 

  27. H. R. Pota and P. J. Moylan, Lyapunov functions for interconnected power systems,IEEE Trans. Automatic Control,37(8) (1992), 1192–1196.

    Google Scholar 

  28. J. M. Skowronski,Control of Nonlinear Mechanical Systems, Plenum, New York, 1991.

    Google Scholar 

  29. E. D. Sontag, Feedback stabilization of nonlinear systems, inRobust Control of Linear Systems and Nonlinear Control, Progress in Systems and Control Theory Series, Vol. 4, M. A. Kaashoek, J, H. van Schuppen, and A. C. M. Ran, eds., Birkhäuser, Boston, 1990, pp. 61–81.

    Google Scholar 

  30. J. J. Stoker,Nonlinear Vibrations in Mechanical and Electrical Systems, 2nd edn., Wiley-Interscience, New York, 1966.

    Google Scholar 

  31. S. Taliaferro, Stability of solutions bifurcating from multiple eigenvalues,J. Funct. Anal,44 (1981), 24–49.

    Google Scholar 

  32. J. M. T. Thompson and H. B. Stewart,Nonlinear Dynamics and Chaos, Wiley, Chichester, 1986.

    Google Scholar 

  33. M. Vidyasagar and A. Venelli, New relationship between input-output and Liapunov stability,IEEE Trans. Automat. Control,25(2) (1982), 481–483.

    Google Scholar 

  34. T. Yoshizawa,Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions, Springer-Verlag, New York, 1975.

    Google Scholar 

  35. V. I. Zubov,Methods of A. M. Lyapunov and Their Application, Noordhoff, Groningen, 1964. (English translation under the auspices of the U.S. Atomic Energy Commission; L. F. Boron, ed.).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, JH. Liapunov functions and stability criteria for nonlinear systems with multiple critical eigenvalues. Math. Control Signal Systems 7, 255–278 (1994). https://doi.org/10.1007/BF01212272

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01212272

Key words

Navigation