Skip to main content
Log in

On the minimal number of trajectories determining a multidimensional system

  • Published:
Mathematics of Control, Signals and Systems Aims and scope Submit manuscript

Abstract

The minimal numberμ(S) of generators of a multidimensional systemS is constructively determined. Such anS is the solution space of a linear system of partial differential or difference equations with constant coefficients. The main theorem generalizes recent results of Heij and Zampieri who calculated the numberμ(S) in the one- (resp. two-) dimensional discrete case. There is also a direct connection with Macaulay's inverse systems in the multidimensional discrete situation, in particular with his principal systems characterized by the relationμ(S)⩽1. It is surprising that, for dimensions greater than one, very many “large” systems are principal in this sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bayer, D., and D. Mumford, What Can be Computed in Algebraic Geometry, Preprint, 1992.

  2. Bourbaki, N.,Commutative Algebra, Hermann, Paris, 1972.

    Google Scholar 

  3. Bourbaki, N.,Algèbre, Chapter 10, Masson, Paris, 1980.

    Google Scholar 

  4. Ehrenpreis, L.,Fourier Analysis in Several Complex Variables, Wiley-Interscience, New York, 1970.

    Google Scholar 

  5. Eisenbud, D., C. Huneke, and W. Vasconcelos, Direct Methods for Primary Decomposition,Invent. Math. 110 (1992), 207–236.

    Google Scholar 

  6. Gianni, P., B. Trager, and G. Zacharias, Gröbner Basis and Primary Decomposition of Polynomial Ideals,J. Symbol. Comput. 6 (1988), 149–168.

    Google Scholar 

  7. Grauert, H., and R. Remmert,Analytische Stellenalgebren, Springer-Verlag, Heidelberg, 1971.

    Google Scholar 

  8. Grauert, H., and R. Remmert,Coherent Analytic Sheaves, Springer-Verlag, Heidelberg, 1984.

    Google Scholar 

  9. Grauert, H., and R. Remmert,Theorie der Steinschen Räume, Springer-Verlag, Heidelberg, 1977.

    Google Scholar 

  10. Gröbner, W., Über die algebraischen Eigenschaften der Integrale von linearen Differentialgleichungen mit konstanten Koeffizienten,Monatsh. Math. Phys. 47 (1939), 247–284.

    Google Scholar 

  11. Heij, C., Exact Modelling and Identifiability of Linear Systems,Automatica 28 (1992), 325–344.

    Google Scholar 

  12. Macaulay, F. S.,The Algebraic Theory of Modular Systems, Cambridge University Press, 1916; reprint by Stechert-Hafner Service Agency, New York, 1964.

  13. Malgrange, B., Systèmes diffèrentiels à coefficients constants, inSèminaire Bourbaki, Vol. 1962/63, 246.01–246.11.

  14. Matlis, E., Injective Modules over Noetherian Rings,Pacific J. Math. 8 (1958), 511–528.

    Google Scholar 

  15. Matsumura, H.,Commutative Ring Theory, Cambridge University Press, Cambridge, 1986.

    Google Scholar 

  16. Nagata, M.,Local Rings, Interscience, New York, 1962.

    Google Scholar 

  17. Oberst, U., Multidimensional Constant Linear Systems,Acta Appl. Math. 20 (1990), 1–175.

    Google Scholar 

  18. Oberst, U., Finite Dimensional Systems of Partial Differential or Difference Equations,Adv. in Math., submitted June 1992.

  19. Oberst, U., Variations on the Fundamental Principle for Linear Systems of Partial Differential and Difference Equations with Constant Coefficients,AAECC, submitted January 1993.

  20. Palamodov, V. P.,Linear Differential Operators with Constant Coefficients, Springer-Verlag, Heidelberg, 1970.

    Google Scholar 

  21. Pauer, F., Gröbner Basen und ihre Anwendungen, inÜberblicke Mathematik (1991), pp. 127–149, Vieweg-Verlag, Braunschweig, 1990.

    Google Scholar 

  22. Serre, J.-P., Geométrie Algébrique et Geométrie Analytique,Ann. Inst. Fourier 6 (1955/56), 1–42.

    Google Scholar 

  23. Serre, J.-P.,Algèbre Locale, 2nd edn., Lecture Notes in Mathematics, Vol. 11, Springer-Verlag, Berlin, 1965.

    Google Scholar 

  24. Willems, J. C., From Time Series to Linear Systems — Part 1. Finite-Dimensional Linear Time-Invariant Systems,Automatica 22 (1986), 561–580.

    Google Scholar 

  25. Willems, J. C., From Time Series to Linear Systems — Part II. Exact Modeling,Automatica 22 (1986), 675–694.

    Google Scholar 

  26. Willems, J. C., Paradigms and Puzzles in the Theory of Dynamical Systems,IEEE Trans. Automat. Control 36 (1991), 259–294.

    Google Scholar 

  27. Zampieri, S., Exact Modeling of 2d-Arrays, Talk at the 2nd IFAC Conference on “System Structure and Control,” Prague, September 1992.

  28. Zariski, O., and P. Samuel,Commutative Algebra, Vol. II, Van Nostrand, Princeton, NJ, 1960.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oberst, U. On the minimal number of trajectories determining a multidimensional system. Math. Control Signal Systems 6, 264–288 (1993). https://doi.org/10.1007/BF01211623

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01211623

Key words

Navigation