Skip to main content
Log in

Exact observability and exponential stability of infinite-dimensional bilinear systems

  • Published:
Mathematics of Control, Signals and Systems Aims and scope Submit manuscript

Abstract

This paper deals with exact observability and stability for a class of infinite-dimensional bilinear systems. First we show that the bilinear systems are exactly observable for any positive bounded input signal. Second we prove that given such an input signal the open-loop bilinear systems (or time-varying linear systems) are exponentially stable. A strong motivation of our study comes from chemical engineering processes described by partial differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Celle, J. P. Gauthier, D. Kazakos, and G. Sallet, Synthesis of nonlinear observers: a harmonic analysis approach,Math. Systems Theory,22 (1989), 291–322.

    Google Scholar 

  2. R. F. Curtain and A. J. Pritchard,Infinite-Dimensional Linear Systems Theory, Springer-Verlag, New York, 1978.

    Google Scholar 

  3. M. Fliess, Some remarks on gain scheduling,Proceedings of the European Control Conference, Grenoble, 1991, pp. 177–181.

  4. J. C. Friedly,Dynamic Behavior of Processes, Prentice-Hall, Englewood Cliffs, New Jersey, 1972.

    Google Scholar 

  5. J. P. Gauthier and C. Z. Xu, H-control of a distributed parameter system with nonminimum phase,Internat. J. Control,53(1) (1991), 45–79.

    Google Scholar 

  6. V. Mikhailov,Equations aux dérivées partielles, MIR, Moscow (French translation), 1980.

    Google Scholar 

  7. A. Pazy,Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York, 1983.

    Google Scholar 

  8. J. Rauch and M. Taylor, Exponential decay of solutions to hyperbolic equations in bounded domain,Indiana Univ. Math. J.,24(1) (1974), 79–86.

    Google Scholar 

  9. P. A. Raviart and J. M. Thomas,Introduction à l'analyse numérique des équations aux dérivées partielles, Masson, Paris, 1988.

    Google Scholar 

  10. D. L. Russell, Control theory of hyperbolic equations related to certain questions in harmonic analysis and spectral theory,J. Math. Anal. Appl.,40, (1972), 336–368.

    Google Scholar 

  11. D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions,Siam Rev.,20(4) (1978), 639–739.

    Google Scholar 

  12. D. L. Russell and G. Weiss, A general necessary condition for exact observability,SIAM J. Control Optim.,32(1) (1994), 1–23.

    Google Scholar 

  13. E. D. Sontag,Mathematical Control Theory: Deterministic Finite-Dimensional Systems, Texts in Applied Mathematics, vol. 6, Springer-Verlag, New York, 1990.

    Google Scholar 

  14. C. Z. Xu, Exponential stability of a class of infinite-dimensional time-varying linear systems,Proceedings of the International Conference on Control and Information, Hong Kong, June 5–9, 1995, pp. 407–411.

  15. C. Z. Xu and J. P. Gauthier, Analyse et commande d'un échangeur thermique à contrecourant,RAIRO APPII,25 (1991), 377–396.

    Google Scholar 

  16. C. Z. Xu, J. P. Gauthier, and I. Kupka, Exponential stability of the heat exchanger equation,Proceedings of the European Control Conference, Groningen, 1993, pp. 303–307.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, C.Z. Exact observability and exponential stability of infinite-dimensional bilinear systems. Math. Control Signal Systems 9, 73–93 (1996). https://doi.org/10.1007/BF01211519

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01211519

Key words

Navigation