Radiation and Environmental Biophysics

, Volume 29, Issue 1, pp 19–30 | Cite as

Changes in nucleoid viscosity following X-irradiation of rat thymic and splenic cells in vitro

  • K. Tempel


Unscheduled DNA synthesis (UDS) suggested a higher DNA repair capacity of X-irradiated rat thymic (T) cells when compared to splenic (S) cells (Tempel 1980). In the present investigations, damage and repair of DNA supercoiling was measured in T- and S-cells following X-irradiation in vitro by using the nucleoid sedimentation technique and a simplified low-shearing viscometric test. - X-irradiation resulted in a dose (0.6–19.2 Gy) - dependent reduction in sedimentation and viscosity of nucleoids. Within a post-irradiation period of 30–45 min after a challenge dose of 19.2 Gy, DNA repair was accompanied by an increase in nucleoid sedimentation and viscosity in T-cells by about 60 and 300, in S-cells by almost 40 and 100%, resp. The increase in nucleoid viscosity within a 30 min repair period could be reduced in a concentration-dependent manner by DNA polymerase - inhibitors and proteinase K. - The higher DNA repair capacity of T-cells as reflected by UDS is confirmed therefore by the nucleoid characteristics. Apart from this suggestion, measuring nucleoid viscosity may be considered as a sensitive, simple and rapid device to detect radiation-induced DNA supercoiling phenomena.


Sedimentation Technique Repair Capacity Challenge Dose Splenic Cell Dependent Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bryant PE, Warring R, Ahnström G (1984) DNA repair kinetics after low doses of X-rays. A comparison of results obtained by the unwinding and nucleoid sedimentation methods. Mutat Res 131:19–26PubMedGoogle Scholar
  2. Čejková M, Skalka M, Beneš L, Matyášova J, Rotreklová E (1986) Uniform distribution of DNA breaks and repair loci in the nucleosomal structure of chromatin after gamma irradiation. Stud Biophys 114:301–310Google Scholar
  3. Chiu S-M, Friedman LR, Sokany NM, Xue L-Y, Oleinick NL (1986) Nuclear matrix proteins are crosslinked to transcriptionally active gene by ionizing radiation. Radiat Res 107:24–38PubMedGoogle Scholar
  4. Cleaver JE (1975) Methods for studying repair of DNA damaged by physical and chemical carcinogens. Methods Cancer Res 9:123–165Google Scholar
  5. Collins A, Downes CS, Johnson RT, Ed. (1984) DNA repair and its inhibition. IRL Press, Oxford WashingtonGoogle Scholar
  6. Cook PR, Brazell IA (1975) Supercoils in human DNA. J Cell Sci 19:261–279PubMedGoogle Scholar
  7. Cress AE, Kurath KM, Hendrix MJC, Bowden GT (1989) Nuclear protein organization and the repair of radiation damage. Carcinogenesis 10:939–943PubMedGoogle Scholar
  8. Dresler SL, Lieberman MW (1983) Identification of DNA polymerases involved in DNA excision repair in diploid human fibroblasts. J Biol Chem 258:9990–9994PubMedGoogle Scholar
  9. Drlica K, Franco RJ (1988) Inhibitors of DNA topoisomerases. Biochemistry 27:2253–2259PubMedGoogle Scholar
  10. Erzgräber G, Lapidus IL (1988) Relationship between sedimentation behaviour of DNA-protein complexes and DNA single- and double-strand breaks after irradiation withγ-rays, pulsed neutrons and12C ions. Int J Radiat Biol 54:31–38PubMedGoogle Scholar
  11. Filippovich IV, Sorokina NI, Soldatenkov VA, Romantzev EF (1982) Supercoiled DNA repair in thymocyte fractions differing in radiosensitivity. Int J Radiat Biol 42:31–14Google Scholar
  12. Filippovich IV, Sorokina NI, Soldatenkov YA, Alfyerova TM, Trebenok ZA (1988) Effect of the inducers of cellular differentiation and of ionizing radiation of thymus lymphocytes: chromatin degradation and programmed cell death. Int J Radiat Biol 53:617–628Google Scholar
  13. Frankenberg-Schwager M (1989) Review of repair kinetics for DNA damage induced in eukaryotic cells in vitro by ionizing radiation. Radiother Oncol 14:307–320PubMedGoogle Scholar
  14. Giaever GN, Wang JC (1988) Supercoiling of intracellular DNA can occur in eukaryotic cells. Cell 55:849–855PubMedGoogle Scholar
  15. Giocanti N, Sabattier R, Ekert B (1989) Restauration du surenroulement de l'ADN de fibroblastes de rat soumis aux rayons gamma on aux neutrons rapides. CR Acad Sci Paris Ser III 308:189–194Google Scholar
  16. Goette A (1982) Einfluß einiger radioprotektiver und radiosensibilisierender Verbindungen auf die semikonservative und unprogrammierte DNA-Synthese von Rattenmilzzellen. Diss med vet MünchenGoogle Scholar
  17. Jaberaboansari A, Nelson GB, RotiRoti JL, Wheeler KT (1988) Postirradiation alterations of neuronal chromatin structure. Radiat Res 114:94–104PubMedGoogle Scholar
  18. Kampinga HH, Wright WD, Konings AWT, RotiRoti J (1988) The interaction of heat and radiation affecting the ability of nuclear DNA to undergo supercoiling changes. Radiat Res 116:114–123PubMedGoogle Scholar
  19. Kelland LR, Steel GG (1988) Inhibition of recovery from damage induced by ionizing in mammalian cells. Radiother Oncol 13:285–299PubMedGoogle Scholar
  20. Krystoßek H (1986) In vitro Röntgenbestrahlung stimulierter und unstimulierter menschlicher B- und T-Lymphozyten. Diss med BerlinGoogle Scholar
  21. Langrock K (1982) Verhalten der Nukleinsäure-Ethidium-Komplex-Sedimentation menschlicher Lymphozyten nach Gammabestrahlung. Radiobiol Radiother 23:301–308Google Scholar
  22. Marshall B, Ralph RK (1982) A simple method for detecting drug effects on the DNA of mammalian cells. Anal Biochem 125:91–95PubMedGoogle Scholar
  23. Maruyama Y, Feola M (1987) Relative radiosensitivities of the thymus, spleen, and lymphohemopoietic systems. Adv Radiat Biol 12:1–82Google Scholar
  24. Mattern MR, Kerrigan DJ, Pommier Y (1987) Nucleoid sedimentation analysis of DNA strand breaks induced in cells exposed to DNA intercalating agents. Pharmac Ther 34:303–319Google Scholar
  25. Michel S, Laval F (1982) Repair ofγ-ray induced single-strand breaks in human lymphocytes. Biochimie 64:749–751PubMedGoogle Scholar
  26. Mullenders LHF, Van Zeeland AA, Natarajan AT (1983) Comparison of DNA loop size and super-coiled domain size in human cells. Mutat Res 112:245–252PubMedGoogle Scholar
  27. Nackerdien Z, Michie J, Böhm I (1989) Chromatin decondensed by acetπlation shows an elevated radiation response. Radiat Res 117:234–244PubMedGoogle Scholar
  28. Olive PL, Hilton J, Durand RE (1986) DNA conformation of chinese hamster V79 cells and sensitivity to ionizing radiation. Radiat Res 107:115–124PubMedGoogle Scholar
  29. Regel K (1988) DNS-Superstrukturen - der Schlüssel zum Verständnis des Strahlenwirkungsmechanismus in Zellen. Radiobiol Radiother 29:529–560Google Scholar
  30. Rose H, Moldenhauer H, Kehrberg G (1985) Die Schädigung der Lymphozyten durch ionisierende Strahlen. Radiobiol Radiother 26:289–297Google Scholar
  31. Ryabchenko NI, Ivannik BP, Proskuryakov SYa (1982) Viscosimetric analysis of the occurrence and repair of DNA single-strand breaks in irradiated animal tissues. Int J Radiat Biol 41:389–399Google Scholar
  32. Snyder RD (1989) Inhibition of X-ray-induced DNA strand break repair in polyamine-depleted HeLa cells. Int J Radiat Biol 55:773–782PubMedGoogle Scholar
  33. Tempel K (1980) Unprogrammierte DNA-Synthese (DNA-Reparatur) in Milz- und Thymuszellen der Ratte nach Einwirkung von UV-Licht, Röntgenstrahlen oder Methylmethansulfonat in vitro. Z Naturforsch 35c:106–111Google Scholar
  34. Tempel K, Spath A (1987) Stimulation of DNA repair synthesis of rat thymocytes by novobiocin and nalidixic acid in vitro without detectable DNA damage. Arch Toxicol 60:287–292PubMedGoogle Scholar
  35. Van Rensburg EJ, Louw WKA, Izatt H, Van Der Watt JJ (1985) DNA supercoiled domains and radiosensitivity of subpopulations of human peripheral blood lymphocytes. Int J Radiat Biol 47:673–679Google Scholar
  36. Van Rensburg EJ, Louw WKA, Van Der Merwe KJ (1987) Changes in DNA supercoiling during repair of gamma-radiation-induced damage. Int J Radiat Biol 52:693–703Google Scholar
  37. Wang JC (1984) DNA supercoiling and its effects on the structure of DNA. J Cell Sci [Suppl] I:21–29Google Scholar
  38. Ward JF (1988) DNA damage produced by ionizing radiation in mammalian cells - identities, mechanisms of formation, and reparability. In: Cohn WE, Moldave K (eds) Progress in nucleic acid research and molecular biology, vol 35. Academic Press, San Diego, pp 95–126Google Scholar
  39. Weniger P (1982) Nucleoid sedimentation as a test system for DNA repair after different types of DNA damage. Progr Mutat Res 4:261–265Google Scholar
  40. Winkle J (1981) Wirkung einiger radioprotektiver und radiosensibilisierender Verbindungen auf die semikonservative und unprogrammierte DNA-Synthese von Rattenthymozyten. Diss med vet MünchenGoogle Scholar
  41. Yamada T, Ohyama H (1988) Radiation-induced interphase death of rat thymocytes is internally programmed (apoptosis). Int J Radiat Biol 53:65–75Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • K. Tempel
    • 1
  1. 1.Arbeitsgruppe Radiologie im Institut für PharmakologieToxikologie und Pharmazie der Tierärztlichen Fakultät der Universität MünchenMünchen 22Federal Republic of Germany

Personalised recommendations