Skip to main content
Log in

The Becker-Döring cluster equations: Basic properties and asymptotic behaviour of solutions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Existence and uniqueness results are established for solutions to the Becker-Döring cluster equations. The density ϱ is shown to be a conserved quantity. Under hypotheses applying to a model of a quenched binary alloy the asymptotic behaviour of solutions with rapidly decaying initial data is determined. Denoting the set of equilibrium solutions byc (ϱ), 0 ≦ ϱ ≦ ϱ s , the principal result is that if the initial density ϱ0 ≦ ϱ s then the solution converges strongly toc (ϱo), while if ϱ0 > ϱ s the solution converges weak* toc s). In the latter case the excess density ϱ0–ϱ s corresponds to the formation of larger and larger clusters, i.e. condensation. The main tools for studying the asymptotic behaviour are the use of a Lyapunov function with desirable continuity properties, obtained from a known Lyapunov function by the addition of a special multiple of the density, and a maximum principle for solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham, F.: Homogeneous nucleation theory. New York: Academic Press 1974

    Google Scholar 

  • Aizenman, M., Bak, T.A.: Convergence to equilibrium in a system of reacting polymers. Commun. Math. Phys.65, 203–230 (1979)

    Google Scholar 

  • Andrews, G., Ball, J.M.: Asymptotic behaviour and changes of phase in one-dimensional nonlinear viscoelasticity. J. Differ. Equations44, 306–341 (1982)

    Google Scholar 

  • Arnold, V.I.: On an a priori estimate in the theory of hydrodynamic stability. Am. Math. Soc. Transl.79, 267–269 (1969)

    Google Scholar 

  • Ball, J.M.: On the asymptotic behaviour of generalized processes, with applications to nonlinear evolution equations. J. Differ. Equations27, 224–265 (1978); Existence of solutions in finite elasticity. In: Proc. IUTAM symp. on finite elasticity. Carlson, D.E., Shield, R.T. (eds.). The Hague: Martinus Nijhoff 1981; Material instabilities and the calculus of variations. In: Phase transformations and material instabilities in solids. Gurtin, M.E. (ed.). New York: Academic Press 1984

    Google Scholar 

  • Ball, J.M., Marsden, J.E.: Quasiconvexity at the boundary, positivity of the second variation and elastic stability. Arch. Rat. Mech. Anal.86, 251–277 (1984)

    Google Scholar 

  • Barbashin, E.A.: On the theory of generalized dynamical systems. Moskov. Gos. Ped. Inst. Učen. Zap.2, 110–133 (1948); English translation by U.S. Department of Commerce, Office of Technical Services, Washington D.C. 20235

    Google Scholar 

  • Becker, R., Döring, W.: Kinetische Behandlung der Keimbildung in übersättigten Dämpfern. Ann. Phys. (Leipzig)24, 719–752 (1935)

    Google Scholar 

  • Binder, K.: Theory for the dynamics of “clusters”. II. Critical diffusion in binary systems and the kinetics of phase separation. Phys. Rev. B15, 4425–4447 (1977)

    Google Scholar 

  • Buhagiar, A.: Ph. D Thesis, Open University 1981

  • Dickman, R., Schieve, W.C.: Proof of the existence of the cluster free energy. J. Stat. Phys.36, 435–446 (1984)

    Google Scholar 

  • Drake, R.: In: Topics in current aerosol research. International reviews in aerosol physics and chemistry, Vol. 2. Hidy, G.M., Brock, J.R. (eds.). Oxford: Pergamon Press 1972

    Google Scholar 

  • Dunford, N., Schwartz, J.T.: Linear operators, Part I. New York: Interscience 1958

    Google Scholar 

  • Friedlander, S.K.: On the particle size spectrum of a condensing vapour. Phys. Fluids3, 693–696 (1960)

    Google Scholar 

  • Hale, J.K.: Dynamical systems and stability. J. Math. Anal. Appl.26, 39–59 (1969)

    Google Scholar 

  • Hendricks, E.M., Ernst, M.H., Ziff, R.M.: Coagulation equations with gelation. J. Stat. Phys.31, 519–563 (1983)

    Google Scholar 

  • Holm, D.D., Marsden, J.E., Ratiu, T., Weinstein, A.: Non-linear stability conditions and a priori estimates for barotropic hydrodynamics. Phys. Lett.98 A, 15–21 (1983)

    Google Scholar 

  • Hartman, P.: Ordinary differential equations. New York: Wiley 1964; reprinted Boston: Birkhäuser 1982

    Google Scholar 

  • Kalos, M., Lebowitz, J.L., Penrose, O., Sur, A.: Clusters, metastability, and nucleation: kinetics of first-order phase transitions. J. Stat. Phys.18, 39–52 (1978)

    Google Scholar 

  • Knops, R.J., Payne, L.E.: On potential wells and stability in nonlinear elasticity. Math. Proc. Camb. Phil. Soc.84, 177–190 (1978)

    Google Scholar 

  • Leyvraz, F., Tschudi, H.R.: Singularities in the kinetics of coagulation processes. J. Phys. A: Math. Gen.14, 3389–3405 (1981)

    Google Scholar 

  • Lieb, E.: Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys.53, 603–641 (1981)

    Google Scholar 

  • Lifshitz, I.M., Slyozov, V.V.: J. Phys. Chem. Solids19, 35–50 (1961)

    Google Scholar 

  • Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case, Part 1. Ann. Inst. Henri Poincaré1, 109–145 (1984)

    Google Scholar 

  • McLeod, J.B.: On an infinite set of non-linear differential equations. Q. J. Math. Oxf. Ser. (2)13, 119–128 (1962a); On an infinite set of non-linear differential equations. Q. J. Math. Oxf. Ser. (2)13, 193–205 (1962b); On a recurrence formula in differential equations. Q. J. Math. Oxf. Ser. (2)13, 283–284 (1962c)

    Google Scholar 

  • Melzak, Z.: A scalar transport equation. Trans. Am. Math. Soc.85, 547–560 (1957)

    Google Scholar 

  • Pego, R.: Phase transitions: stability and admissibility in one dimensional nonlinear viscoelasticity. Arch. Rat. Mech. Anal. (to appear)

  • Penrose, O., Buhagiar, A.: Kinetics of nucleation in a lattice gas model: Microscopic theory and simulation compared. J. Stat. Phys.30, 219–241 (1983)

    Google Scholar 

  • Penrose, O., Lebowitz, J.L.: Towards a rigorous theory of metastability. In: Studies in statistical mechanics, Vol. VII. Fluctuation phenomena. Montroll, E.W., Lebowitz, J.L. (eds.). Amsterdam: North-Holland 1979

    Google Scholar 

  • Penrose, O., Lebowitz, J., Marro, J., Kalos, M., Tobochnik, J.: Kinetics of a first-order phase transition: Computer simulations and theory. J. Stat. Phys.34, 399–426 (1984)

    Google Scholar 

  • Reuter, G.E.H., Ledermann, W.: On the differential equations for the transition probabilities of Markov processes with enumerably many states. Proc. Camb. Phil. Soc.49, 247–262 (1953)

    Google Scholar 

  • von Smoluchowski, M.: Versuch einer mathematischen Theorie der kolloiden Lösungen. Z. Phys. Chem.92, 129–168 (1917)

    Google Scholar 

  • Spouge, J.L.: An existence theorem for the discrete coagulation-fragmentation equations. Math. Proc. Camb. Phil. Soc.96, 351–357 (1984)

    Google Scholar 

  • Young, L.C.: Lectures on the calculus of variations and optimal control theory. Philadelphia: Saunders reprinted by Chelsea 1969

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. L. Lebowitz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ball, J.M., Carr, J. & Penrose, O. The Becker-Döring cluster equations: Basic properties and asymptotic behaviour of solutions. Commun.Math. Phys. 104, 657–692 (1986). https://doi.org/10.1007/BF01211070

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01211070

Keywords

Navigation