Skip to main content
Log in

Quaternionic quantum field theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that a quaternionic quantum field theory can be formulated when the numbers of bosonic and fermionic degrees of freedom are equal and the fermions, as well as the bosons, obey a second order wave equation. The theory takes the form of either a functional integral with quaternion-imaginary Lagrangian, or a Schrödinger equation and transformation theory for quaternion-valued wave functions, with a quaternion-imaginary Hamiltonian. The connection between the two formulations is developed in detail, and many related issues, including the breakdown of the correspondence principle and the Hilbert space structure, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birkhoff, G., von Neumann, J.: Ann. Math.37, 823 (1936)

    Google Scholar 

  2. Finkelstein, D., Jauch, M., Schiminovich, S., Speiser, D.: Foundations of quaternion quantum mechanics. J. Math. Phys.3, 207 (1962)

    Google Scholar 

  3. Günaydin, M., Gürsey, F.: An octonionic representation of the Poincaré group. Lett. Nuovo Cimento6, 401 (1973); Quark statistics and octonions. Phys. Rev. D9, 3387 (1974); Quark structure and octonions. J. Math. Phys.14, 1651 (1973)

    Google Scholar 

  4. Gürsey, F.: Some algebraic structures in particle theory. Günaydin, M.: Moufang plane and octonionic quantum mechanics. Both in: Proceedings of the second Johns Hopkins workshop. Domokos, G., Kövesi-Domokos, S. (eds.). Baltimore: Johns Hopkins 1978

  5. Günaydin, M., Piron, C., Ruegg, H.: Moufang plane and octonionic quantum mechanics. Commun. Math. Phys.61, 69 (1978)

    Google Scholar 

  6. Stueckelberg, E.C.G.: Théorie des quanta dans l'espace de Hilbert réel I, II, III et IV. Helv. Phys. Acta33, 727 (1960);34, 621, 675 (1961),35, 673 (1962)

    Google Scholar 

  7. See especially Finkelstein, D., Jauch, J.M., Schiminovich, S., Speiser, D.: [1] above and Principle of generalQ covariance. J. Math. Phys.4, 788 (1963)

    Google Scholar 

  8. Finkelstein, D., Jauch, J.M., Speiser, D.: Quanternionic representations of compact groups. J. Math. Phys.4, 136 (1963) and: Notes on quaternion quantum mechanics. In: Logico-algebraic approach to quantum mechanics II. Hooker, C., (ed.). Dordrecht: Reidel 1959

    Google Scholar 

  9. Emch, G.: Mécanique quantique quaternionienne et Relativité restreinte I. Helv. Phys. Acta36, 739, 770 (1963)

    Google Scholar 

  10. Dyson, F.J.: The threefold way. Algebraic structure of symmetry groups and ensembles in quantum mechanics. J. Math. Phys.3, 1199 (1962), Correlations between eigenvalues of a random matrix. Commun. Math. Phys.19, 235 (1970), and Quaternion determinants. Helv. Phys. Acta45, 289 (1972)

    Google Scholar 

  11. Mehta, M.L.: Elements of matrix theory. Delhi: Hindustan 1977

    Google Scholar 

  12. Horwitz, L.P., Biedenharn, L.C.: Quaternion quantum mechanics: second quantization and gauge fields. Ann. Phys. (New York)157, 432 (1984)

    Google Scholar 

  13. Adler, S.L.: Quaternionic quantum field theory. Phys. Rev. Letts.55, 783 (1985)

    Google Scholar 

  14. Adler, S.L.: Quaternionic Gaussian multiple integrals. In: Quantum field theory and quantum statistics: Essays in honor of the 60th birthday of E. S. Fradkin. Batalin, I.A., Isham, C.J., Vilkovisky, G.A. (eds.), to be published by Adam Hilger

  15. Finkelstein, D., Jauch, J.M., Speiser, D.: Notes on quaternion quantum mechanics. Ref. [4] op. cit., Sect. 4

    Google Scholar 

  16. Dirac, P.A.M.: The Lagrangian in quantum mechanics. Phys. Sowjetunion3, 26 (1933)

    Google Scholar 

  17. Feynman, R.P.: Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys.20, 367 (1948)

    Google Scholar 

  18. Finkelstein, D., Jauch, J.M., Schiminovich, S., Speiser, D.: Ref. [1] op. cit., Sect. 5

    Google Scholar 

  19. Nelson, E.: Feynman integrals and the Schrödinger equation. J. Math. Phys.5, 332 (1964)

    Google Scholar 

  20. Horwitz, L.P., Biedenharn, L.C.: Ref. [4] op. cit., Eq. (3.15) and Theorem III.2

    Google Scholar 

  21. Faddeev, L.D., Slavnov, A.A.: Gauge fields: Introduction to quantum theory. Reading: Benjamin/Cummings 1980, Sect. 3.4

    Google Scholar 

  22. Candlin, D.J.: On sums over trajectories for systems with Fermi statistics. Nuovo Cimento4, 231 (1956)

    Google Scholar 

  23. Berezin, F.A.: The method of second quantization. New York: Academic 1966

    Google Scholar 

  24. For a very brief and clear account, see Halpern, M.B., Jevicki, A., Senjanović, P.: Field theories in terms of particle-string variables: Spin, internal symmetry and arbitrary dimension. Phys. Rev. D16, 2476 (1977), Appendix

    Google Scholar 

  25. Finkelstein, D., Jauch, J.M., Schiminovich, S., Speiser, D.: Ref. [4] op. cit.

    Google Scholar 

  26. Bardeen, W.A.: Regularization of gauge field theories. In: Proceedings of the XVI international conference on high energy physics, Fermilab, Batavia, 1972, Vol. 2, p. 295

  27. Schwartz, J.: Introduction to superstrings. In: Proceedings of the April 1984 Spring School on supergravity and supersymmetry, Trieste, Italy, discussion following Eq. (25)

  28. Lee, T.D., Wick, G.C.: Negative metric and the unitarity of theS-matrix. Nucl. Phys. B9, 209 (1969)

    Google Scholar 

  29. Tomboulis, E.T.: On unitarity in renormalizableR 2μ υ -quantum gravity. To appear in the Fradkin birthday volume, Ref. [6] op. cit.

  30. Feynman, R.P., Gell-Mann, M.: Theory of the Fermi interaction. Phys. Rev.109, 193 (1958)

    Google Scholar 

  31. Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Boston: Pittman 1982, Sect. 4.6

    Google Scholar 

  32. Adler, S.L.: Quaternionic chromodynamics as a theory of composite quarks and leptons. Phys. Rev. D21, 2903 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Jaffe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alder, S.L. Quaternionic quantum field theory. Commun.Math. Phys. 104, 611–656 (1986). https://doi.org/10.1007/BF01211069

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01211069

Keywords

Navigation