Radiation and Environmental Biophysics

, Volume 24, Issue 4, pp 287–301 | Cite as

Cesium and cobalt transfer from soil to vegetation on permanent pastures

  • Ute Boikat
  • Andrea Fink
  • J. Bleck-Neuhaus


The Cs transfer from soil into pasture vegetation was investigated by using a variation of experimental conditions: (I) 67 pots with 7 kg soil from 3 marshy and 1 sandy site in the lower Weser region in Northwest Germany are used in a greenhouse with134CS under 8 different experimental procedures for 2 harvests; (II) 3 undisturbed 50 kg lysimeters were observed for137Cs and60Co transfer under outdoor conditions for 4 harvests, depth profiles of the activity were determined afterwards; (III) the transfer of the atmospheric fallout137Cs directly to the vegetation and from soil to vegetation after preventing its direct uptake by plastic covers was determined at 4 locations in the open pasture.

The experiments resulted in higher Cs transfer in the case of podzolic soil and/or direct injection of Cs solution into the rooting zone of old permanent pasture vegetation while the Cs transfer was about 2–4 fold lower when the radioactive solution was applied to newly sown grass. Transfer often decreases with increasing age of Cs in the soil. In addition, statistical analysis of the widely scattered data did not show significant results for the influence of type of marsh, experimental procedure, soil factors with pH of (4.5–6.1), organic carbon, amount of added Cs (microquantity), exchangeable, K, and total Ca.

Some figures are given for60Co. The observed transfer factors, combined from all experiments appear lognormally distributed with median values 0.22 on podzolic and 0.09 on marshy soils (Bq/kg fresh plant per Bq/kg air dried soil).


Cobalt Cesium Depth Profile Direct Injection Transfer Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen AJ (1967) Investigations on the plant uptake of fission products from contaminated soils. Risø Rep 170Google Scholar
  2. Barber DA (1964) Influence of soil organic matter on the entry of caesiums-137 into plants. Nature 204:1326–1327Google Scholar
  3. Biesold H (1980) Der Transfer von Strontium und Caesium über die Wurzeln in die Vegetation. Der Bundesminister des Innern, Statusbericht über den Transfer von RadionuklidenGoogle Scholar
  4. Boikat U (1982) Transfer von Cäsium vom Boden zur Vegetation auf Dauerweiden im Marschgebiet der Wesermündungsregion, Dissertation Universität BremenGoogle Scholar
  5. Bundesminister des Innern (1977) Allgemeine Berechnungsgrundlagen für die Bestimmung der Strahlenexposition durch Emission radioaktiver Stoffe mit der Abluft, Empfehlung der Strahlenschutzkommission, BonnGoogle Scholar
  6. Bundesminister des Innern (1979) Allgemeine Berechnungsgrundlagen für die Strahlenexposition bei radioaktiven Ableitungen mit der Abluft oder in Oberflächengewässer. Gem Min Bl 30:371–435Google Scholar
  7. Bundesminister des Innern (1980) Statusbericht über den Transfer von Radionukliden, BonnGoogle Scholar
  8. Cline JF (1981) Aging effects of the availability of strontium and cesium to plants. Health Phys 41:293–296PubMedGoogle Scholar
  9. D'Souza TJ, Kirchmann R, Lehr JJ (1972) Distribution of radiostrontium and radiocaesium in the organic and mineral fraction of pasture soils and their subsequent transfer to grasses, IAEA-Symp. Isotopes and radiation in soil-plant relationships including forestry, pp 595–604, WienGoogle Scholar
  10. Gebhardt H, Giani L, Rosemann V (1981) Bodenkundliche Kennzeichnung und Nuklidaustauscheigenschaften von Marschböden, Sachbericht zum BMI-Forschungsvorhaben St Sch 702e)Google Scholar
  11. Gulyakin IV, Yudintseva EV (1962) Effect of organic matter on the accumulation of fission products in crops. Compost Sci 2:9–12Google Scholar
  12. Handl J, Kühn W (1980) Determination of transfer coefficients for Cs-137 and Co-60 in a slime-soil-grassland ecosystem. Health Phys 38:703–705PubMedGoogle Scholar
  13. Hebel RD (1973) Untersuchungen über den Einfluß verschiedener Umweltfaktoren auf die Verteilung von Cs-137 in Böden und der Bodenbeschaffenheit auf die Cs-137 Aufnahme durch Pflanzen unter dem Gesichtspunkt der Schlachttierkontamination, Dissertation Ludwig-Maximilians-Universität MünchenGoogle Scholar
  14. Heine K, Wiechen A (1979) Untersuchungen zum Cs-137-Übergang in der Nahrungskette Boden-Bewuchs-Milch an einem gegebenen Standort. Milchwissenschaften 34(5):275–280Google Scholar
  15. Krieger HL, Kahn B, Cummings S (1967) Deposition and uptake of Sr-90 and Cs-137 in an established pasture. In: Aberg B, Hungate FP (eds) Radioecological concentration processes, Pergamon Press, New York, pp 59–72Google Scholar
  16. Mistry KB, Bhujbal BM, D'Souza TJ (1973) Influence of agronomic practices on uptake of fission products by crops from soils of regions adjoining nuclear installations in India, IAEA-Symp. Environmental behaviour of radionuclides released in the nuclear industry, WienGoogle Scholar
  17. Ritchie JC, Mc-Hentry JR, Gill AC (1972) The distribution of Cs-137 in the litter and upper 10 cm of soil under different cover types in Northern Mississippi. Health Phys 22:197–198PubMedGoogle Scholar
  18. Romney EM, Wallace A, Schutz RK, Kinnear J, Wood RA (1981) Plant uptake of237Np,239,240Pu244Am, and244Cm from soils representing major food production areas of the United States. Soil Sci 132:40–49Google Scholar
  19. Russell RS (1966) Radioactivity and human diet, Relationships between caesium and potassium. Pergamon Press, OxfordGoogle Scholar
  20. Sawney BL (1972) Selective sorption and fixation of cations by clay minerals, Clay Clay Miner 20:93–100Google Scholar
  21. Schulz RK (1965) Soil chemistry of radionuclides. Health Phys 11:1317–1324PubMedGoogle Scholar
  22. Steffens W, Führ F, Mittelstaedt W (1980) Evaluation of small scale laboratory and pot experiments to determine realistic transfer factors for the radionuclides Sr-90, Cs-137, Co-60 and Mn-54, 5th International Congress of the IRPA, Vol III, pp 343–346, JerusalemGoogle Scholar
  23. Tahir M, Stewart JWB (1975) Effect of organic matter incorporation into soils on Cesium-137 uptake by wheat plants. Radiat Bot 15:323–328Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Ute Boikat
    • 1
  • Andrea Fink
    • 2
  • J. Bleck-Neuhaus
    • 3
  1. 1.Stuhr 2Federal Republic of Germany
  2. 2.Versuchs- und Beratungsring Ökologischer Landbau Niedersachsen e.V.FallingsbostelFederal Republic of Germany
  3. 3.Institut für PhysikUniversität BremenBremenFederal Republic of Germany

Personalised recommendations