Skip to main content
Log in

Can one hear the dimension of a fractal?

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the spectrum of the Laplacian in a bounded open domain of ℝn with a rough boundary (i.e. with possibly non-integer dimension) and we discuss a conjecture by M. V. Berry generalizing Weyl's conjecture. Then using ideas Mark Kac developed in his famous study of the drum, we give upper and lower bounds for the second term of the expansion of the partition function. The main thesis of the paper is to show that the relevant measure of the roughness of the boundary should be based on Minkowski dimensions and on Minkowski measures rather than on Haussdorff ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berry, M.V.: Distribution of modes in fractals resonators. In: Structural stability in physics, pp. 51–53. Güttinger, W., Eikemeier, H. (eds.). Berlin, Heidelberg, New York: Springer 1979

    Google Scholar 

  • Berry, M.V.: Some geometrical aspects of wave motion: wavefront, dislocations, diffraction catastrophes, diffractals. In: Geometry of the Laplace operator, Proc. Symp. Pure Math., Vol. 36, pp. 13–38. Providence RI: Am. Math. Soc. 1980

    Google Scholar 

  • Berard, P.H.: Remarques sur la conjecture de Weyl. Composito Math.48, 35–53 (1983)

    Google Scholar 

  • Brownell, F.H.: Extended asymptotic eigenvalue distributions for bounded domain inn-space. J. Math. Mech.6, 119–166 (1957)

    Google Scholar 

  • Clark, C.: The asymptotic distributions of eigenvalues and eigenfunctions for elliptic boundary value problems. SIAM Rev.9, 627–646 (1967)

    Google Scholar 

  • Federer, H.: Geometric measure theory. Berlin, Heidelberg, New York: Springer 1969

    Google Scholar 

  • Gromes, D.: Über die asymptotische Verteilung der Eigenwerte des Laplace Operators für Gebiete auf der Kugeloberfläche. Math. Z.94, 110–121 (1966)

    Google Scholar 

  • Ivrii, V.Ja.: Second term of the spectral asymptotic expansion of the Laplace-Beltrami operator on manifolds with boundary. Funct. Anal. Appl.14, 98–106 (1980)

    Google Scholar 

  • Kac, M.: Can you hear the shape of a drum? Am. Math. Mon.73, 1–23 (1966)

    Google Scholar 

  • Kuznetsov, N.V.: Asymptotic distribution of the eigenfrequencies of a plane membrane in the case when the variables can be separated. Differ. Equations2, 715–723 (1966)

    Google Scholar 

  • Louchard, G.: Mouvement brownien et valeurs propres du Laplacien. Ann. Inst. H. PoincaréSer.B.4, 331–342 (1968)

    Google Scholar 

  • Mandelbrot, B.B.: Fractals: form, chance, and dimension. San Francisco: Freeman 1977

    Google Scholar 

  • McKean, H.P., Singer, I.M.: Curvature and the eigenvalues of the Laplacian. J. Differ. Geom.1, 43–69 (1967)

    Google Scholar 

  • Melrose, R.: Weyl's conjecture for manifolds with concave boundary. In: Geometry of the Laplace operator. Proc. Symp. Pure Math., Vol. 36, pp. 254–274. Providence, RI: Am. Math. Soc. 1980

    Google Scholar 

  • Oksendale, B.K.: Null sets for measures orthogonal toR(X). Am. J. Math.44, 331–342 (1972)

    Google Scholar 

  • Port, S., Stone, C.: Brownian motion and classical potential theory. New York: Academic Press 1978

    Google Scholar 

  • Seeley, R.: A sharp asymptotic remainder estimate for the eigenvalues of the Laplacian in a domain of ℝ3. Adv. Math.29, 244–269 (1978)

    Google Scholar 

  • Simon, B.: Functional integration and quantum physics. New York: Academic Press 1979

    Google Scholar 

  • Urakawa, H.: Bounded domains which are isospectral but not congruent. Ann. Sci. Ec. Norm. Super.15, 441–456 (1982)

    Google Scholar 

  • van den Berg, M.: Bounds on Green's functions of second order differential equations. J. Math. Phys.22, 2452–2455 (1981)

    Google Scholar 

  • Vitushkin, A.G.: Analytic capacity of sets and problems in approximation theory. Russ. Math. Surv.18, 508–512 (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B. Simon

Dedicated to the memory of Mark Kac

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brossard, J., Carmona, R. Can one hear the dimension of a fractal?. Commun.Math. Phys. 104, 103–122 (1986). https://doi.org/10.1007/BF01210795

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01210795

Keywords

Navigation