Skip to main content
Log in

Rate of convergence in the central limit theorem for empirical processes

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Let ℕ n and\(\mathbb{B}_\mu \) be an empirical process and a generalized Brownian bridge, respectively, indexed by a class ℱ of real measurable functions. From the central limit theorem for empirical processes it follows that

for allr≥0. In this paper, assuming the class ℱ to be countably determined, under certain conditions we obtain an estimate

for some constantC. Vapnik-Červonenkis class and the indicators of lower left orthants provide examples of classes ℱ considered here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Acosta, A., and Giné, E. (1979). Convergence of moments and related functionals in the general central limit theorem in Banach spaces.Z. Wahrsch. verw. Gebiete 48, 213–231.

    Google Scholar 

  2. Alexander, K. S. (1984). Probability inequalities for empirical processes and a law of the iterated logarithm.Ann. Prob. 12, 1041–1067; correctionibid.Alexander, K. S. (1987) Probability inequalities for empirical processes and a law of the iterated logarithm.Ann. Prob. 15, 428–430.

    Google Scholar 

  3. Alexander, K. S. (1987). The central limit theorem for empirical processes on Vapnik-Červonenkis classes.Ann. Prob. 15, 178–203.

    Google Scholar 

  4. Andersen, N. T., and Dobrič, V. (1987). The central limit theorem for stochastic processes.Ann. Prob. 15, 164–177.

    Google Scholar 

  5. Beck, J. (1985). Lower bounds on the approximation of the multivariate empirical process.Z. Wahrsch. verw. Gebiete 70, 289–306.

    Google Scholar 

  6. Bentkus, V. (1983). Differentiable functions defined in spacesc o and ℝk.Lithuanian Math. J. 23, 26–36.

    Google Scholar 

  7. Bentkus, V. (1989). On differentiability properties of the norm and differentiable functions with bounded support in the Banach spacel k .Lithuanian Math. J. (to appear).

  8. Borisov, I. S. (1984). On the rate of convergence in the central limit theorem for empirical measures.Proc. Inst. Math., Acad. Sci. Siberian 3, 125–143.

    Google Scholar 

  9. Breiman, L. (1968).Probability, Addison-Wesley. Reading, MA.

    Google Scholar 

  10. Davydov, Yu. A., and Lifshits, M. A. (1985). Filtering method in some probabilistic problems.J. Sov. Math. 31, 2796–2858.

    Google Scholar 

  11. Donsker, M. D. (1952). Justification and extension of Doob's heuristic approach to the Kolmogorov-Smirnov theorem.Ann. Math. Stat. 23, 277–281.

    Google Scholar 

  12. Dudley, R. M. (1966). Weak convergence of probabilities on nonseparable metric spaces and empirical measures on Euclidean spaces.Illinois J. Math. 10, 109–126.

    Google Scholar 

  13. Dudley, R. M. (1984).A Course on Empirical Processes. Lecture Notes in Mathematics, Vol. 1097, pp. 2–142, Springer-Verlag, Berlin.

    Google Scholar 

  14. Dudley, R. M. (1987). Universal Donsker classes and metric entropy.Ann. Prob. 15, 1306–1326.

    Google Scholar 

  15. Dudley, R. M., and Philipp, W. (1983). Invariance principles for sums of Banach space valued random elements and empirical processes.Z. Wahrsch. verw. Gebiete 82, 509–552.

    Google Scholar 

  16. Fernique, X. (1971). Regularité de processus gaussiens.Invent. Math. 12, 304–320.

    Google Scholar 

  17. Gaenssler, P., and Stute, W. (1979). Empirical processes: A survey of results for independent and identically distributed random variables.Ann. Prob. 7, 193–243.

    Google Scholar 

  18. Giné, E. (1976). Bounds for the speed of convergence in the central limit theorem inC(S).Z. Wahrsch. verw. Gebiete 36, 317–331.

    Google Scholar 

  19. Giné, E., and Zinn, J. (1986). Lectures on the Central Limit Theorem for Empirical Processes. InProbability and Banach Spaces, Proceedings Zaragoza 1985. Lecture. Notes in Mathematics, Vol. 1221, pp. 50–113, Springer-Verlag, Berlin.

    Google Scholar 

  20. Hoffmann-Jørgensen, J. (1974). Sums of independent Banach space valued random variables.Studia Math. 52, 159–186.

    Google Scholar 

  21. Lifshits, M. A. (1986). The distribution density of the maximum of a Gaussian process.Theor. Prob. Appl. 31, 134–142.

    Google Scholar 

  22. Komlós, J., Major, P., and Tusnády, G. (1975). An approximation of partial sums of independent random variables and the sample distribution function.Z. Wahrsch. verw. Gebiete 32, 111–131.

    Google Scholar 

  23. Marcus, M. B., and Shepp, L. A. (1972). Sample behavior of Gaussian processes.In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 3, pp. 423–442, University of California Press, Berkeley, CA.

    Google Scholar 

  24. Massart, P. (1986). Rates of convergence in the central limit theorem for empirical processes.Ann. Inst. Henri Poincaré 22, 381–423.

    Google Scholar 

  25. Massart, P. (1989). Strong approximation for multivariate empirical and related processes, via KMT constructions.Ann. Prob. 17, 266–291.

    Google Scholar 

  26. Paulauskas, V. I. (1977). Rate of convergence in the central limit theorem inC(S).Lihuanian Math. J. 16, 587–611.

    Google Scholar 

  27. Paulauskas, V. (1982).On the Density of the Norm of Gaussian Vector in Banach Spaces. Lecture Notes in Mathematics, Vol. 990, pp. 179–197, Springer-Verlag, Berlin.

    Google Scholar 

  28. Paulauskas, V., and Juknevičiene, D., (1989). On the rate of convergence in the central limit theorem in the spaceD[0,1].Lihuanian Math. J. 28, 229–238.

    Google Scholar 

  29. Paulauskas, V., and Račkauskas, A. (1989).Approximation Theory in the Central Limit Theorem. Exact Results in Banach Spaces, Kluwer, Dordrecht, Boston, London.

    Google Scholar 

  30. Sazonov, V. (1981).Normal Approximation—Some Recent Advances. Lecture Notes in Mathematics, Vol. 879, Springer-Verlag, Berlin.

    Google Scholar 

  31. Tsirel'son, B. S. (1975). The density of the distribution of the maximum of a Gaussian process.Theor. Prob. Appl. 20, 847–855.

    Google Scholar 

  32. Tusnády, G. (1977). A remark on the approximation of the sample DF in the multidimensional case.Period. Math. Hung. 8, 53–55.

    Google Scholar 

  33. Wenocur, R. S., and Dudley, R. M., (1981). Some special Vapnik-Červonenkis classes.Discrete Math. 33, 313–318.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norvaiša, R., Paulauskas, V. Rate of convergence in the central limit theorem for empirical processes. J Theor Probab 4, 511–534 (1991). https://doi.org/10.1007/BF01210322

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01210322

Key Words

Navigation