Skip to main content
Log in

Synthetic DNA and Biology

  • Published:
Bioscience Reports

Abstract

“Most of the significant work has been summarized in a number of reviews and articles. In these there was, of necessity, a good deal of simplification and omission of detail .... With the passage of time, even 1 find myself accepting such simplified accounts.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, S. P., Kavka, K. S., Wykes, E. J., Holder, S. B. and Galluppi, G. R. (1983) Hindered dialkylamino nucleoside phosphite reagents in the synthesis of two DNA 51-mers.J. Am. Chem. Soc. 105:661–663.

    Google Scholar 

  • Astell, C. R., Suzuki, D. T., Klett, R. P., Smith, M. and Goldberg, I. H. (1969) The intracellular location of the adenine- and thymine-rich component of deoxyribonucleate in testicular cells of the crab,Cancer productus.Exptl. Cell Res. 54:3–10.

    PubMed  Google Scholar 

  • Astell, C. R. and Smith, M. (1971) Thermal elution of complementary sequences of nucleic acids from cellulose columns with covalently attached oligonucleotides of known length and sequence.J. Biol. Chem. 246:1944–1946.

    PubMed  Google Scholar 

  • Astell, C. R. and Smith, M. (1972). Synthesis and properties of oligonucleotide-cellulose columns.Biochemistry 11:4114–4120.

    PubMed  Google Scholar 

  • Astell, C. R., Doel, M. T., Jahnke, P. A. and Smith, M. (1973). Further studies on the properties of oligonucleotide cellulose columns.Biochemistry 12:5068–5074.

    PubMed  Google Scholar 

  • Atkinson, T. and Smith, M. (1984). Solid-phase synthesis of oligodeoxyribo-nucleotides by the phophite-triester method. In:Oligonucleotide Synthesis. A Practical Approach (M. J. Gait, ed.). lIRL Press, Oxford, pp. 35–81.

    Google Scholar 

  • Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. and Struhl, K. (1987).Current Protocols in Molecular Biology (2 volumes, supplemented quarterly). Wiley Interscience, New York, N.Y.

    Google Scholar 

  • Aviv, H. and Leder, P. (1972). Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose.Prov. Natl. Acad. Sci. USA 69:1408–1412.

    Google Scholar 

  • Barrell, B. G., Air, G. M. and Hutchison, C. A. III (1976). Overlapping genes in bacteriophage øX174.Nature 264:34–41.

    PubMed  Google Scholar 

  • Borden, R. K. and Smith, M. (1966) Preparation of nucleoside-3′,5′ cyclic phosphates in strong base.J. Org. Chem. 31:3247–3253.

    PubMed  Google Scholar 

  • Boss, J. M., Gillam, S., Zitomer, R. S. and Smith, M. (1981) Sequence of the yeast iso-1-cytochromec mRNA.J. Biol. Chem. 256:12958–12961.

    PubMed  Google Scholar 

  • Brown, N. L. and Smith, M. (1977) The sequence of a region of bacteriophage øX174 coding for parts of genes A and B.J. Mol. Biol. 116:1–28.

    PubMed  Google Scholar 

  • Brutlag, D., Atkinson, M. R., Setlow, P. and Kornberg, A. (1969) An active fragment of DNA polymerase produced by proteolytic cleavage.Biochem. Biophys. Res. Commun. 37:982–989.

    PubMed  Google Scholar 

  • Buchardt, O., Egholm, M., Berg, R. H. and Nielsen, P. E. (1993) Peptide nucleic acids and their potential applications in biotechnology.Tibtech 11:384–386.

    Google Scholar 

  • Chamberlin, M. J. (1965) Cooperative properties of DNA, RNA and hybrid homopolymer pairs.Fed. Proc. 24:1446–1457.

    PubMed  Google Scholar 

  • Chambers, R. W., Moffatt, J. G. and Khorana, H. G. (1957) A new synthesis of guanosine-5′-phosphate.J. Am. Chem. Soc. 79:3747–3752.

    Google Scholar 

  • Conner, B. J., Reyes, A. A., Morin, C., Itakura, K., Teplitz, R. L. and Wallace, R. B. (1983) Detection of sickle-cell βs-globin allele by hybridization with synthetic oligonucleotides.Proc. Natl. Acad. Sci. USA 80:278–282.

    PubMed  Google Scholar 

  • Crooke, S. T. (1993) Oligonucleotide therapy.Curr. Opin. Biotechnol. 3:656–661.

    Google Scholar 

  • Deol, M. T. and Smith, M. (1973) The chemical synthesis of deoxyribo-oligonucleotides complementary to a portion of the lysozyme gene of phage T4 and their hybridization to phage-specific RNA and phage DNA.FEBS Letts.34:99–102.

    Google Scholar 

  • Fischer, E. (1917) Source unknown.

  • Gilham, P. T. (1962) Complex formation in polynucleotides and its application to the separation of polynucleotides.J. Am. Chem. Soc. 84:1311–1312.

    Google Scholar 

  • Gilham, P. T. and Robinson, W. E. (1964) The use of polynucleotide-celluloses in sequence studies of nucleic acids.J. Am. Chem. Soc. 86:4885–4989.

    Google Scholar 

  • Gillam, S. and Smith, M. (1972) Enzymatic synthesis of deoxyribo-oligonucleotides of defined sequence.Nature New Biol. 238:233–234.

    PubMed  Google Scholar 

  • Gillam, S. and Smith, M. (1974) Enzymatic synthesis of deoxyribo-oligonucleotides of defined sequence. Properties of the enzyme.Nucleic Acids Res. 1:1631–1648.

    PubMed  Google Scholar 

  • Gillam, S., Waterman, K. and Smith, M. (1975) The base-pairing specificity of cellulose-pdT9.Nucleic Acids Res. 2:625–634.

    PubMed  Google Scholar 

  • Gillam, S., Rottman, F., Jahnke, P. and Smith, M. (1977) Enzymatic synthesis of oligonucleotides of defined sequence: synthesis of a segment of yeast iso-1-cytochromec gene.Proc. Natl. Acad. Sci. USA 74:96–100.

    PubMed  Google Scholar 

  • Gillam, S., Jahnke, P. and Smith, M. (1978) Enzymatic synthesis of oligodeoxyribonucleotides of defined sequence.J. Biol. Chem. 253:2532–2539.

    PubMed  Google Scholar 

  • Gillam, S. and Smith, M. (1979a) Site-specific mutagenesis using synthetic oligodeoxyribonucleotide primers: optimum conditions and minimum oligodeoxyribonucleotide length.Gene 8:81–97.

    PubMed  Google Scholar 

  • Gillam, S. and Smith, M. (1979b) Site-specific mutagenesis using synthetic oligodeoxyribonucleotide primers:in vitro selection of mutant DNA.Gene 8:99–106.

    PubMed  Google Scholar 

  • Gillam, S. and Smith, M. (1980) Use ofE. coli polynucleotide phosphorylase for the synthesis of oligodeoxyribonucleotides of defined sequence.Methods Enzymol. 65:687–701.

    PubMed  Google Scholar 

  • Gillam, S., Atkinson, T., Markham, A. and Smith, M. (1985). Gene K of bacteriophage øX174 codes for a protein which affects the burst size of phage production.J. Virol. 53:708–709.

    PubMed  Google Scholar 

  • Goulian, M., Kornberg, A. and Sinsheimer, R. L. (1967). Synthesis of infectious phage øX174 DNA.Proc. Natl. Acad. Sci. USA 58:2321–2328.

    PubMed  Google Scholar 

  • Goulian, M. (1968a) Incorporation of oligodeoxynucleotides into DNA.Proc. Natl. Acad. Sci. USA 61:284–291.

    PubMed  Google Scholar 

  • Goulian, M. (1968b) Initiation of the replication of single-stranded DNA byEcherichia coli DNA polymerase. Cold Spring Harbor Symp.Quant. Biol. 33:11–20.

    Google Scholar 

  • Goulian, M., Goulian, S. H., Codd, E. E. and Blumenfield, A. Z. (1973) Properties of oligodeoxynucleotides that determine priming activity withEscherichia coli deoxyribonucleic acid polymerase I.Biochemistry 12:2893–2901.

    PubMed  Google Scholar 

  • Hutchison, C. A. III and Edgell, M. H. (1971) Genetic assay for small fragments of bacteriophage øX174 deoxyribonucleic acid.J. Virol. 8:181–189.

    PubMed  Google Scholar 

  • Hutchison, C. A. III, Phillips, S., Edgell, M. H., Gillam, S., Jahnke, P. and Smith, M. (1978) Mutagenesis at a specific position in a DNA sequence.J. Biol. Chem. 253:6551–6560.

    PubMed  Google Scholar 

  • Ingles, C. J., Trevithick, J. R., Smith, M. and Dixon, G. H. (1966) Biosynthesis of protamine during spermatogenesis in salmonid fish.Biochem. Biophys. Res. Comm. 22:627–634.

    PubMed  Google Scholar 

  • Khorana, H. G., Tener, G. M. Moffatt, J. G. and Pol, E. H. (1956) A new approach to the synthesis of polynucleotides.Chem. and Ind. London, 1523.

  • Khorana, H. G. (1961)Some Recent Developments in the Chemistry of Phosphate Esters of Biological Interest. J. Wiley and Sons. N.Y.

    Google Scholar 

  • Khorana, H. G. (1969) Nucleic acid synthesis in the study of the genetic code. In: Les Prix Nobel en 1968. P. A. Nerstedt and Sons, Stockholm, pp. 196–220.

    Google Scholar 

  • Khorana, H. G. (1979) Total synthesis of a gene.Science 203:614–625.

    PubMed  Google Scholar 

  • Klenow, H. and Henningsen, I. (1970) Selected elimination of the exonuclease activity of the deoxyribonucleic acid polymerase fromEscherichia coli B by limited proteolysis.Proc. Natl. Acad. Sci. USA 65:168–175.

    PubMed  Google Scholar 

  • Klenow, H., Overgaard-Hansen, K. and Patkar, S. A. (1971) Proteolytic cleavage of native DNA polymerase into two different catalytic fragments. Influence of assay conditions on the change of exonuclease activity and polymerase activity.Eur. J. Biochem. 22:371–381.

    PubMed  Google Scholar 

  • Klett, R. P., Cerami, A. and Reich, E. (1968). Exonuclease VI, a new nuclease activity associated withE. coli DNA polymerase.Proc. Natl. Acad. Sci. USA 60:943–950.

    PubMed  Google Scholar 

  • Kornberg, A. (1980)DNA Replication. W. H. Freeman and Company. San Francisco, CA.

    Google Scholar 

  • Koski, R. A., Clarkson, S. G., Kurjan, J., Hall, B. D. and Smith, M. (1980) Mutations at the yeast SUP4 tRNATyr locus; transcription of the mutant genesin vitro.Cell 22:415–425.

    PubMed  Google Scholar 

  • Kunkel, T. A. (1985) Rapid and efficient site-specific mutagenesis without phenotypic selection.Proc. Natl. Acad. Sci. USA 82:488–492.

    PubMed  Google Scholar 

  • Kurjan, J., Hall, B. D., Gillam, S. and Smith, M. (1980) Mutations at the yeast SUP4 tRNAtyr locus: DNA sequence changes in mutants lacking suppresor activity.Cell 20:701–709.

    PubMed  Google Scholar 

  • Lederberg, J. (1959) A view of genetics. In:Les Prix Nobel En 1958. Norstedt, Stockholm, pp. 170–189.

    Google Scholar 

  • Maxam, A. M. and Gilbert, W. (1977). A new method for sequencing DNA.Proc. Natl. Acad. Sci. USA 74:560–564.

    PubMed  Google Scholar 

  • McBride, L. J. and Caruthers, M. H. (1983) An investigation of several deoxyribonucleoside phosphoramidates useful for synthesizing deoxyoligonucleotides.Tetrahedron Lett. 24:245–248.

    Google Scholar 

  • McConaughy, B. L. and McCarthy, B. J. (1967) The interaction of oligodeoxyribonucleotides with denatured DNA.Biochim. Biophys. Acta 149:180–189.

    PubMed  Google Scholar 

  • McNeil, J. B. and Smith, M. (1985)Saccharomyces cerevisiae CYC1 mRNA 5′-end positioning: analysis byin vitro mutagenesis, using synthetic duplexes with random mismatch base pairs.Mol. Cell Biol. 5:3545–3551.

    PubMed  Google Scholar 

  • Michelson, A. M. and Monny, C. (1967) Oligonucleotides and their association with polynucleotides.Biochim. Biophys. Acta 149:107–126.

    PubMed  Google Scholar 

  • Montgomery, D. L., Hall, B. D., Gillam, S. and Smith, M. (1978) Identification and isolation of the yeast cytochromec gene.Cell 14:673–680.

    PubMed  Google Scholar 

  • Mullis, K. (1994) Les Prix Nobel en 1993. Norstedt, Stockholm.

    Google Scholar 

  • Niyogi, S. K. and Thomas, C. A., Jr. (1968). The stability of oligoadenylate-polyuridylate complexes as measured by thermal chromatography.J. Biol. Chem. 243:1220–1223.

    PubMed  Google Scholar 

  • Niyogi, S. K. (1969). The influence of chain length and base composition on the specific association of oligoribonucleotides with denatured deoxyribonucleic acid.J. Biol. Chem. 244:1576–1581.

    PubMed  Google Scholar 

  • Razin, A., Hirose, T., Itakura, K. and Riggs, A. D. (1978) Efficient correction of a mutation by use of chemically synthesized DNA.Proc. Natl. Acad. Sci. USA 75:4268–4270.

    PubMed  Google Scholar 

  • Sambrook, J. Fritsch, E. F. and Maniatis, T. (1989)Molecular Cloning. A Laboratory Manual, 2nd Edition (3 volumes). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Sanger, F. and Coulson, A. R. (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase.J. Mol. Biol. 94:441–448.

    PubMed  Google Scholar 

  • Sanger, F., Coulson, A. R., Friedmann, T., Air, G. M., Barrell, B. G., Brown, N. L., Fiddes, J. C., Hutchison, C. A. III, Slocombe, P. M. and Smith, M. (1978). The nucleotide sequence of bacteriophage øX174.J. Mol. Biol. 125:225–246.

    PubMed  Google Scholar 

  • Sanger, F. (1981) Determination of nucleotide sequences in DNA. In: Les Prix Nobel En 1980. Norstedt, Stockholm, pp. 143–159.

    Google Scholar 

  • Sanger, F. (1988). Sequences, sequences and sequences.Ann Rev. Biochem. 57:1–28.

    PubMed  Google Scholar 

  • Sanger, F., Nicklen, S. and Coulson, A. R. (1977) DNA sequencing with chain terminating inhibitors.Proc. Natl. Acad. Sci. USA 74:5463–5467.

    PubMed  Google Scholar 

  • Sasavage, N. L., Smith, M., Gillam, S., Astell, C., Nilson, J. H. and Rottman, F. (1980). Use of oligodeoxynucleotide primers to determine poly(adenylic acid) adjacent sequences in messenger ribonucleic acid.Biochemistry 19:1737–1743.

    PubMed  Google Scholar 

  • Sasavage, N. L., Smith, M., Gillam, S., Woychik, R. P. and Rottman, F. M. (1982). Variation in the polyadenylation site of prolactin messenger RNA.Proc. Natl. Acad. Sci. USA 79:223–227.

    PubMed  Google Scholar 

  • Smith, M. and Khorana, H. G. (1958) An improved and general method for the synthesis of ribo- and deoxyribo-nucleoside-5′ triphosphates.J. Am. Chem. Soc. 80:1141–1145.

    Google Scholar 

  • Smith, M. and Khorana, H. G. (1959) Specific synthesis of the C5′-C3′ inter-ribonucleotide linkage: the synthesis of uridylyl-(3′ → 5′)-uridine.J. Am. Chem. Soc. 81:2911.

    Google Scholar 

  • Smith, M. Drummond, G. I. and Khorana, H. G. (1961) The synthesis and properties of ribonucleoside-3′,5′ cyclic phosphates.J. Am. Chem. Soc. 83:698–706.

    Google Scholar 

  • Smith, M., Rammler, D. H., Goldberg, I. H. and Khorana, H. G. (1961) Synthesis of uridylyl-(3′ → 5′)-Uridine and uridylyl-(3′ → 5′)-adenosine.J. Am. Chem. Soc. 84:430–440.

    Google Scholar 

  • Smith, M. (1964) Synthesis of deoxyribonucleoside-3′5′ cyclic phosphates by base-calalysed transes- terification.J. Am. Chem. Soc. 86:3586.

    Google Scholar 

  • Smith, M., Leung, D. W., Gillam, S., Astell, C. R., Montgomery, D. L. and Hall, B. D. (1979) Sequence of the gene for iso-1-cytochromec inSaccharomyces cerevisiae.Cell 16:753–761.

    PubMed  Google Scholar 

  • Smith, M. and Gillam, S. (1981) Constructed mutants using synthetic oligodeoxyribonucleotides as site-specific mutagens. In:Genetic Engineering. Principles and Methods (J. K. Setlow and A. Hollaender, eds.). Volume 3. Plenum Press, New York, N.Y. pp. 1–52.

    Google Scholar 

  • Smith, M. (1983) Synthetic oligodeoxyribo nucleotides as probes for nucleic acids and as primers in sequence determination. In: Methods of DNA and RNA Sequencing (S. M. Weissman, ed.). Praeger Publishers, New York, N.Y. pp. 23–68.

    Google Scholar 

  • Smith, M. (1985)In vitro mutagenesis.Ann. Rev. Genet. 19:423–462.

    PubMed  Google Scholar 

  • Stewart, J. W. and Sherman, F. (1974) Yeast frameshift mutations identified by sequence changes in iso-1-cytochromec. In:Molecular and Environmental Aspects of Mutagenesis (L. Prakash, F. Sherman, M. W. Miller, C. W. Lawrence and Taber, H. W., eds.). Charles C. Thomas, Springfield, IL pp. 102–107.

    Google Scholar 

  • Suggs, S. V., Wallace, R. B., Hirose, T., Kawashima, E. H. and Itakura, K. (1981) Use of synthetic oligonucleotides as hybridization probes: isolation of cloned cDNA sequences for human β2-microglobulin.Proc. Natl Acad. Sci. USA 78:6613–6617.

    PubMed  Google Scholar 

  • Taylor, J. W., Ott, J. and Eckstein, F. (1985) The rapid generation of oligonucleotide-directed mutations at high frequency using phosphothioate-modified DNA.Nucleic Acids Res. 13:1451–1455.

    Google Scholar 

  • Tigerstrom, R. von and Smith, M. (1970) Oligodeoxyribo-nucleotides: chemical synthesis in anhydrous base.Science 167:1266–1268.

    PubMed  Google Scholar 

  • Tigerstrom, R. von, Jahnke, P. and Smith, M. (1975a) The synthesis of the internucleotide bond by a base-catalysed reaction.Nucleic Acids Res. 2:1727–1736.

    PubMed  Google Scholar 

  • Tigerstrom, R. von, Jahnke, P., Wylie, V. and Smith, M. (1975b) Application of base-catalysed reaction to the synthesis of dinucleotides containing the four common deoxyribonucleosides and of oligodeoxythymdylates.Nucleic Acids Res. 2:1737–1743.

    PubMed  Google Scholar 

  • Wallace, R. B., Johnson, M. J., Hirose, T., Miyake, T., Kawashima, E. H. and Itakura, K. (1981) Hybridization of oligonucleotides of mixed sequence to rabbit β-globin DNA.Nucleic Acids Res. 9:3647–3656.

    PubMed  Google Scholar 

  • Watson, J. D., Hopkins, N. H., Roberts, J. W., Steitz, J. A. and Weiner, A. M. (1987) Molecular Biology of the Gene. 4th Edn. The Benjamin/Cummings Publishing Company, Inc. Menlo Park, CA.

    Google Scholar 

  • Watson, J. D., Gilman, M., Witkawski, J. and Zoller, M. (1993).Recombinant DNA. 2nd Edn. Scientific American Books, New York, N.Y.

    Google Scholar 

  • Weisbeek, P. J. and van de Pol, J. H. (1970) Biological activity of øX147 replicative form DNA fragments.Biochim. Biophys. Acta 224:328–338.

    PubMed  Google Scholar 

  • Winter, G., Fersht, A. R., Wilkinson, A. J., Zoller, M. J. and Smith, M. (1982) Redesigning enzyme structure by site-directed mutagenesis: tryosyl t-RNA synthetase and ATP binding.Nature 299:756–758.

    PubMed  Google Scholar 

  • Zoller, M. J. and Smith, M. (1982) Oligonucleotide-directed mutagenesis using M13-derived vectors: an efficient and general procedure for the production of point mutations in any fragment of DNA.Nucleic Acids Res. 10:6487–6500.

    PubMed  Google Scholar 

  • Zoller, M. J. and Smith, M. (1983) Oligonucleotide-directed mutagenesis of fragments cloned in M13 vectors.Methods Enzymol. 100:468–500.

    PubMed  Google Scholar 

  • Zoller, M. J. and Smith, M. (1984) Oligonucleotide-directed mutagenesis: a simple method using two oligonucleotide primers and a single-stranded DNA template.DNA 3:479–488.

    PubMed  Google Scholar 

  • Zoller, M. J. and Smith, M. (1987) Oligonucleotide-directed mutagenesis: a simple method using two oligonucleotide primers and a single-stranded DNA template.Methods Enzymol. 154:329–350.

    PubMed  Google Scholar 

  • Zoller, M. J. (1991) New molecular biology methods for protein engineering.Curr. Opin. Biotechnol. 2:526–531.

    PubMed  Google Scholar 

  • Zoller, M. J. (1992) New recombinant DNA methodology for protein engineering.Curr. Opin. Biotechnol. 3:348–354.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The Nobel lecture given on December 8, 1993 by Dr. M. Smith and published in Les Prix Nobel 1993, printed by Norstedts Tryckeri, Stockholm, Sweden 1994, republished here with the permission of the Nobel Foundation, the copyright holder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, M. Synthetic DNA and Biology. Biosci Rep 14, 51–66 (1994). https://doi.org/10.1007/BF01210301

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01210301

Key words

Navigation