Advertisement

Theoretica chimica acta

, Volume 32, Issue 1, pp 57–70 | Cite as

Polarisabilites moléculaires et effet diélectrique de milieu à l'état liquide. Étude théorique de la molécule d'eau et de ses diméres

  • Daniel Rinaldi
  • Jean-Louis Rivail
Commentationes

Molecular polarizability and dielectric effect of medium in the liquid phase. Theoretical study of the water molecule and its dimers

Abstract

The model of Onsager in which a polar molecule undergoes a reaction field due to the polarization of the molecular surroundings is used to evaluate by a S.C.F. calculation (CNDO/2 approximation) the modifications of a molecular structure in the liquid state.

Application to water molecule and to three polar dimers for values of the dielectric constant varying between 3 and 78, shows that most of geometric parameters and dipoles moments vary of few per cent when the molecule is inserted in a liquid. In the liquid state dipole moments do not depend very much on the dielectric constant but energies and relative stabilities of isomers are strongly dependent on the medium.[/p]

Key words

Electric polarizabilities Solvent effect Water H-bond 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. 1.
    Chu,B.: Molecular forces. New York: Interscience 1967. - Reichardt,C.: Effets de solvant en chimie organique. Paris: Flammarion 1952Google Scholar
  2. 2.
    Onsager,L.: J. Am. Chem. Soc.58, 1486 (1936)Google Scholar
  3. 3.
    BarriolJ., Weisbeeker,A.: Compt. Rend.259, 2831 (1964)Google Scholar
  4. 4.
    Scholtke,I.G.: Physica15,437 (1949). - Buckingham,A.D.: Australian. J. Chem.6, 93, 323 (1953); - Trans. Faraday Soc.49, 881 (1953)Google Scholar
  5. 5.
    Thiebaut,J.M., Rivail,J.L., Barriol,J.: J. Chem. Soc., Faraday Trans. II,68, 1253 (1972). - Thiebaut,J.M.: These Nancy, 1971Google Scholar
  6. 6.
    Barriol,J.: Les moments dipolaires. Paris: Gauthier Villars 1957. - Böttcher,C.F.J.: Theory of electric polarization. Amsterdam: Elsevier 1952Google Scholar
  7. 7.
    Linder,B.: J. Chem. Phys.37, 963 (1962);40, 622 (1964)Google Scholar
  8. 8.
    London,F.: Z. Physik63, 245 (1930); - Z. Physik. Chem. (B)11, 222 (1931); - Trans. Farad. Soc.33, 8(1937)Google Scholar
  9. 9.
    Julg,A.: Chimie quantique. Paris: Dunod 1967.Google Scholar
  10. 10.
    Rinaldi,D., Rivail,J.L.: Compt. Rend.274, 1664 (1972)Google Scholar
  11. 11.
    Hush,N.S., Williams,M.L.: Chem. Phys. Letters5, 507 (1970)Google Scholar
  12. 12.
    Kollman,P.A., Allen,L.C.: Chem. Rev.72, 283 (1972)Google Scholar
  13. 13.
    Pople,J.A., Segal,G.A.: J. Chem. Phys.44, 3289 (1966). - Pople,J.A., Beveridge,D.L.: Approximate molecular orbital theory. New York: McGraw Hill 1970Google Scholar
  14. 14.
    Hölemann,P., Goldschmidt,H.: Z. Physik. Chem. B,24, 199 (1934)Google Scholar
  15. 15.
    Dixon,M., Claxton,T.A., Smith,J.A.S.: J. Chem. Soc. Faraday Trans. II,68, 2158 (1972)Google Scholar
  16. 16.
    Barriol,J., Regnier,J.: Compt. Rend.237, 307 (1953)Google Scholar
  17. 17.
    Barriol,J.: Elements de mécanique quantique. Paris: Masson 1966Google Scholar
  18. 18.
    Rinaldi,D.: These Nancy, 1969Google Scholar
  19. 19.
    Thompson,H.B.: J. Chem. Phys.47, 3407 (1967)Google Scholar
  20. 20.
    Durand,E.: Solutions numériques des équations algébriques, Tome II p. 19, Paris: Masson 1961Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Daniel Rinaldi
    • 1
  • Jean-Louis Rivail
    • 1
  1. 1.Laboratoire de Chimie ThéoriqueUniversité de Nancy INancy CedexFrance

Personalised recommendations