Communications in Mathematical Physics

, Volume 79, Issue 4, pp 573–579 | Cite as

Possible new strange attractors with spiral structure

  • A. Arneodo
  • P. Coullet
  • C. Tresser


We define a class of three-dimensional differential equations which might present strange attractors of a new kind. This is illustrated by numerical observations on an explicit example.


Differential Equation Neural Network Statistical Physic Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gurel, O., Rössler, O.E.: Ann. N.Y. Acad. Sci.316 (1979)Google Scholar
  2. 2.
    Smale, S.: Bull. Am. Math. Soc.73, 747 (1967)Google Scholar
  3. 3.
    Bowen, R., Ruelle, D.: Invent. math.29, 181 (1975)Google Scholar
  4. 4.
    Henon, M.: Commun. Math. Phys.50, 69 (1976)Google Scholar
  5. 5.
    Curry, J.H., Yorke, J.A.: The structure of Attractors in dyn. systems. Markley et al. (ed). In: Lecture notes in mathematics. Vol. 668, 48, Berlin, Heidelberg, New York: Springer 1978Google Scholar
  6. 6.
    Rössler, O.E.: Phys. Lett.57A, 397 (1976)Google Scholar
  7. 7.
    Devaney, R., Nitecki, Z.: Commun. Math. Phys.67, 137 (1979)Google Scholar
  8. 8.
    Marotto, F.R.: Commun. Math. Phys.68, 187 (1979)Google Scholar
  9. 9.
    Misiurewicz, M., Szewc, B.: Warszawa Preprint (1979)Google Scholar
  10. 10.
    Tresser, C., Coullet, P., Arneodo, A.: J. Phys. A13, L-123 (1980)Google Scholar
  11. 11.
    Newhouse, S.: Publ. I.H.E.S.50, 101 (1979)Google Scholar
  12. 12.
    Newhouse, S., Palis, J.: Dynamical systems. Peixoto, M. (ed.). New York: Academic Press 1973Google Scholar
  13. 13.
    Misiurewicz, M.: Talk given at the International Conference on Nonlinear Dynamics held at New-York on December 1979Google Scholar
  14. 14.
    Lorenz, E.N.: J. Atmos. Sci.20, 130 (1963)Google Scholar
  15. 15.
    Guckenheimer, J.: Hopf bifurcation and its applications. Marsden, J.E., Mc Craken, M. (eds.). In: Applied Mathematical Science, Vol. 19. New York: Springer 1976Google Scholar
  16. 16.
    Guckenheimer, J., Williams, R.F.: Publ. I.H.E.S.50, 59 (1979)Google Scholar
  17. 17.
    Williams, R.F.: Publ. I.H.E.S.50, 73 (1979)Google Scholar
  18. 18.
    Coullet, P., Tresser, C., Arneodo, A.: Phys. Lett.72A, 268 (1979)Google Scholar
  19. 19.
    Shil'nikov, L.P.: Sov. Mat. Dok.6, 163 (1965)Google Scholar
  20. 20.
    Shil'nikov, L.P.: Mat. USSR. Sb.10, 91 (1970)Google Scholar
  21. 21.
    Hartman, P.: Ordinary differential equations. New-York: Wiley 1964Google Scholar
  22. 22.
    Grobman, D.: Dokl. Akad. Nauk. USSR128, 880 (1965)Google Scholar
  23. 23.
    Sternberg, S.: Am. J. Math.80, 623 (1958)Google Scholar
  24. 24.
    Arneodo, A., Coullet, P., Tresser, C.: Nice Preprint NTH 80/7Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • A. Arneodo
    • 1
  • P. Coullet
    • 2
  • C. Tresser
    • 2
  1. 1.Laboratoire de Physique ThéoriqueUniversité de NiceNice CedexFrance
  2. 2.Equipe de Mécanique StatistiqueUniversité de NiceNice CedexFrance

Personalised recommendations