Communications in Mathematical Physics

, Volume 79, Issue 4, pp 457–472 | Cite as

On the bundle of connections and the gauge orbit manifold in Yang-Mills theory

  • P. K. Mitter
  • C. M. Viallet


In an appropriate mathematical framework we supply a simple proof that the quotienting of the space of connections by the group of gauge transformations (in Yang-Mills theory) is aC principal fibration. The underlying quotient space, the gauge orbit space, is seen explicitly to be aC manifold modelled on a Hilbert space.


Neural Network Manifold Statistical Physic Hilbert Space Complex System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Singer, I.M.: Commun. Math. Phys.60, 7 (1978)Google Scholar
  2. 2.
    Narasimhan, M.S., Ramadas, T.R.: Commun. Math. Phys.67, 21 (1979)Google Scholar
  3. 3.
    Babelon, O., Viallet, C.M.: Phys. Lett.85B, 246 (1979)Google Scholar
  4. 4.
    Palais, R.S.: Foundations of global non linear analysis. New York: Benjamin Company Inc. 1968Google Scholar
  5. 5.
    Eells, J.: Bull. Am. Math. Soc.72, 751–807 (1966)Google Scholar
  6. 6.
    Atiyah, M., Hitchin, N., Singer, I.: Proc. R. Soc. (London) A362, 425 (1978)Google Scholar
  7. 7.
    Kodaira, K., Morrow, J.: Complex manifolds. New York: Holt, Rinehart and Winston 1971Google Scholar
  8. 8.
    Kobayashi, S., Nomizu, K.: Foundations of differential geometry, Vol. 1. New York: Interscience 1963Google Scholar
  9. 9.
    Daniel, M., Viallet, C.M.: Phys. Lett.76B, 458 (1978)Google Scholar
  10. 10.
    Daniel, M., Viallet, C.M.: Rev. Mod. Phys.52, 175 (1980)Google Scholar
  11. 11.
    Mitter, P.K.: Cargèse Lectures (1979) In: Recent developments in Gauge theories, Hooft, G. et al. (eds.). New York: Plenum Press (1980)Google Scholar
  12. 12.
    Asorey, M., Mitter, P.K.: Regularized continuum Yang-Mills process and Feynman-Kac functional integral. Preprint (PAR.LPTHE 80/22) (to be published in Commun. Math. Phys.)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • P. K. Mitter
    • 1
  • C. M. Viallet
    • 1
  1. 1.Laboratoire de Physique Théorique et Hautes EnergiesUniversité Pierre et Marie CurieParis Cedex 05France

Personalised recommendations