Skip to main content
Log in

Oxidation of nanometer-sized iron particles

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The evolution of the oxidation of ultrafine (5 nm diameter) α-iron particles in ambient air has been studied using Mössbauer spectroscopy and electron microscopy. A 1–2 nm thick oxide layer was found to appear almost immediately, whereafter the oxidation proceeded rather slowly. The rate of oxidation can be understood from the Caberra-Mott model of oxidation of metal surfaces. The oxide formed consists of a mixture of Fe3O4 and γ-Fe2O3, but with the magnetic properties significantly modified due to the finite size of the oxide crystallites, e.g. the magnetic hyperfine fields are somewhat smaller than for the bulk Fe3O4 and γ-Fe2O3, and a very strong spin-canting was revealed. A Verwey transition was found to occur between 12 and 80 K. The Debye temperature of the oxide layer was found to be about 185 K for the thinnest observed oxide layer, increasing to about 215 Kafter exposure of the α-iron particles to air for one week.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Haneda andA. H. Morrish,Surf. Sci. 77 (1978) 584.

    Google Scholar 

  2. M. Domke andB. Kyvelos,Corrs. Sci. 23 (1983) 921.

    Google Scholar 

  3. I. Tamura andM. Hayashi,Surf. Sci. 146 (1984) 501.

    Google Scholar 

  4. T. Shinjo, T. Iwasaki, T. Shigematsu andT. Takada,Jpn J. Appl. Phys. 23 (1984) 283.

    Google Scholar 

  5. A. Papaefthymiou, A. Kostikos, A. Simopoulos, D. Niarchos, S. Gangopadyay, G.C. Hadjipanayis, C. M. Sorensen, andK. J. Klabunde,J. Appl. Phys. 67 (1990) 4487.

    Google Scholar 

  6. A. Makishima, Y. Yamamoto andK. Watanabe,Bull. Chem. Soc. Jpn 63 (1990) 147.

    Google Scholar 

  7. Idem, ibid. 63 (1990) 3189.

    Google Scholar 

  8. B. Sinković, P. D. Johnson, N. B. Brookes, A. Clarke andN. V. Smith,Phys. Rev. Lett. 65 (1990) 1647.

    PubMed  Google Scholar 

  9. H. Xiong, R. Huang, Q. Lu, Y. Hsia, R. Liu, H. Lu, L. Wang, Y. Xu, andG. Fang,Hyperfine Interact. 68 (1991) 401.

    Google Scholar 

  10. I. Tamura andM. Hayashi,Jpn J. Appl. Phys. 31 (1992) 2540.

    Google Scholar 

  11. S. Linderoth, M. D. Bentzon andS. Mørup,Nucl. Instrum. Meth. B 76 (1993) 173.

    Google Scholar 

  12. R. J. Pollard,Hyperfine Interact. 41 (1988) 509.

    Google Scholar 

  13. R. S. Hargrove andW. Kündig,Solid State Commun. 7 (1969) 223.

    Google Scholar 

  14. S. Mørup andH. Topsøe,J. Magn. Magn. Mater. 31–34 (1983) 953.

    Google Scholar 

  15. R. Aragon, J. P. Shepherd, J. W. Koenitzer, D. J. Buttrey, R. J. Rasmussen andJ. M. Honig,J. Appl Phys. 57 (1985) 3221.

    Google Scholar 

  16. A. H. Morrish andK. Haneda,J. Magn. Magn. Mater. 35 (1983) 105.

    Google Scholar 

  17. J. M. D. Coey,Phys. Rev. Lett. 27 (1971) 1140.

    Google Scholar 

  18. P. V. Hendriksen, F. Bødker, S. Linderoth, S. Wells andS. Mørup,J. Phys. Condens. Matter,6 (1994) 3081.

    Google Scholar 

  19. F. T. Parker, M. W. Foster, D. T. Margulies andA. E. Berkowitz,Phys. Rev. B 47 (1993) 7885.

    Google Scholar 

  20. J. M. D. Coey,Can. J. Phys. 65 (1987) 1210.

    Google Scholar 

  21. M. B. Madsen, S. Mørup andC. J. W. Koch,Hyperfine Interact. 27 (1986) 329.

    Google Scholar 

  22. E. Tronc, P. Prené, J. P. Jolivet, F. D'Orazio, F. Lucari, D. Fiorani, M. Godinho, R. Cherkaoui, M. Nogues andJ. L. Dormann,Hyperfine Interact. 95 (1995) 129.

    Google Scholar 

  23. S. Mørup,J. Magn. Magn. Mater. 37 (1983) 39.

    Google Scholar 

  24. R. S. Preston, S. S. Hanna andJ. Heberle,Phys. Rev. 128 (1962) 2207.

    Google Scholar 

  25. L. D. Lafleur andC. Goodman,Phys. Rev. B 4 (1971) 2915.

    Google Scholar 

  26. G. A. Sawatzky, F. Van Der Wonde andA. H. Morrish,ibid. 183 (1969) 383.

    Google Scholar 

  27. P. J. Picone, K. Haneda andA. H. Morrish,J. Phys. C 15 (1982) 317.

    Google Scholar 

  28. F. P. Fehlner andN. F. Mott,Oxid. Metals 2 (1970) 59.

    Google Scholar 

  29. K. R. Lawless,Rep. Prog. Phys. 37 (1974) 231.

    Google Scholar 

  30. M. W. Ruckman, J. Chen, M. Strogin andE. Horache,Phys. Rev. B 45 (1992) 14273.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linderoth, S., Mørup, S. & Bentzon, M.D. Oxidation of nanometer-sized iron particles. J Mater Sci 30, 3142–3148 (1995). https://doi.org/10.1007/BF01209229

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01209229

Keywords

Navigation