Skip to main content
Log in

An improvement in processing of hydroxyapatite ceramics

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hydroxyapatite ceramics have been fabricated via two different processing routes, a conventional processing route and an emulsion-refined route. The conventional precipitation processing of powder precursors for hydroxyapatite ceramics results in the formation of hard particle agglomerates, which degrade both the compaction and densification behaviour of the resultant powder compacts. An emulsion-refinement step has been shown to be effective in “softening” particle agglomerates present in the conventionally processed powder precursor. As a result, the emulsion-refined powder compact exhibits both a higher green density and a higher sintered density than the un-refined powder compact, on sintering at temperatures above 800 °C. The effect of powder agglomeration on densification during both the initial and later stage of sintering is discussed. The attainable sintered density of the conventionally processed material was found to be limited by the presence of hard powder agglomerates, which were not effectively eliminated by the application of a pressing pressure of 200 MPa. These hard powder agglomerates, which form highly densified regions in the sintered ceramic body, commenced densification at around 400 °C which is more than 100 °C lower than the densification onset temperature for the emulsion-refined powder compact, when heated at a rate of 5 °C min−1. The inter-agglomerate voids, manifested by the differential sintering, resulted in the formation of large, crack-like pores, which act as the strength-limiting microstructural defects in the conventionally processed hydroxyapatite. A fracture strength of 170±12.3 MPa was measured for the emulsion-refined material compared to 70±15.4 MPa for the conventionally processed material, when both were sintered at 1100 °C for 2 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. L. Hench,J. Am. Ceram. Soc. 74 (1991) 1487.

    Google Scholar 

  2. M. Jarcho, C. H. Bolen, M. B. Thomas, J. Bobick, J. K. Kay andR. H. Doremus,J. Mater. Sci. 11 (1976) 2027.

    Google Scholar 

  3. A. Quinton, R. Nass andH. Schmidt, private communication (1994).

  4. T. Hattori andY. Iwadate,J. Am. Ceram. Soc. 73 (1990) 1803.

    Google Scholar 

  5. F. F. Lange,ibid. 72 (1989) 3.

    Google Scholar 

  6. J. Zheng andJ. S. Reed,Am. Ceram. Soc. Bull. 71 (1992) 1410.

    Google Scholar 

  7. B. Kellett andF. F. Lange,J. Am. Ceram. Soc. 67 (1984) 369.

    Google Scholar 

  8. S. K. Ellis andE. P. McNamara,Am. Ceram. Soc. Bull. 68 (1989) 988.

    Google Scholar 

  9. R. Roy,J. Am. Ceram. Soc. 52 (1969) 344.

    Google Scholar 

  10. A. B. Hardy, W. E. Rhine, G. Gowda, T. J. McMohan, R. E. Riman andH. K. Bowen, in “Ultrastructure Processing of Advanced Ceramics”, edited by J. D. Mackenzie and D. R. Ulrich (Wiley, New York, 1988) p. 407.

    Google Scholar 

  11. B. H. Robinson,Chem. Britain (April) (1990) 342.

  12. P. Reyen, H. Bastius andM. Fielder, in “Ceramic Powders”, edited by P. Vincenzine (Elsevier, Amsterdam, 1983) p. 499.

    Google Scholar 

  13. A. Celikkaya andM. Akinc, in “Ceramic Transactions”, Vol. 1A, “Ceramic Powder Science II”, edited by G. L. Messing, E. R. Fuller and H. Hausner (American Ceramic Society, Westerville, OH, 1988) pp. 110–17.

    Google Scholar 

  14. T. Kanai, W. E. Rhine andH. K. Bowen,ibid.“ pp. 119–27.

    Google Scholar 

  15. S. D. Ramamurthi, Z. Xu andD. A. Payne,J. Am. Ceram. Soc. 73 (1990) 2760.

    Google Scholar 

  16. G. H. Mäher, C. E. Hutchins andS. D. Ross,Ceram. Bull. 72 (1993) 72.

    Google Scholar 

  17. S. E. Friberg,Prog. Colloid. Polym. Sci. 68 (1983) 41.

    Google Scholar 

  18. M. Akao, H. Aoki andK. Kato,J. Mater. Sci. 16 (1981) 809.

    Google Scholar 

  19. S. Timoshenko andS. Wainwsky-kreigers, “Theory of Plates and Shells” (McGraw-Hill, New York 1959) p. 71.

    Google Scholar 

  20. J. S. Reed, “Introduction to Principles of Ceramic Processing” (Wiley, New York, 1989).

    Google Scholar 

  21. F. F. Y. Wang (ed.), “Ceramic Fabrication Processes”, Treatise on Materials Science and Technology, Vol. 9 (Academic Press, London, 1976).

    Google Scholar 

  22. G.Y. Onoda andL.L. Hench (eds), “Ceramic Processing Before Firing” (Wiley, New York, 1978).

    Google Scholar 

  23. G. C. Kuczynski,Trans. AIME 185 (1949) 169.

    Google Scholar 

  24. W. D. Kingery, H. K. Bowen andD. R. Uhlmann, “Introduction to Ceramics” (Wiley, New York, 1976).

    Google Scholar 

  25. E. B. Slamovich andF. F. Lange,J. Am. Ceram. Soc. 73 (1990) 3368.

    Google Scholar 

  26. J. Wang, C. B. Ponton andP. M. Marquis,ibid. 75 (1992) 3457.

    Google Scholar 

  27. A. G. Evans,ibid. 65 (1982) 127.

    Google Scholar 

  28. E. B. Slamovich andF. F. Lange,ibid. 75 (1992) 2498.

    Google Scholar 

  29. W. D. Kingery andB. Francois, in “Sintering and Related Phenomena”, edited by G. C. Kuczynski, N. A. Hooton and G. F. Gibbon (Gordon and Breach, New York, 1967) pp. 471–96.

    Google Scholar 

  30. F. F. Lange andB. I. Davis, in “Advances in Ceramics”, Vol. 12, edited by N. Claussen, M. Ruble and A. H. Heuer (American Ceramic Society, Columbus, OH, 1984) pp. 699–713.

    Google Scholar 

  31. F. F. Lange,J. Am. Ceram. Soc. 67 (1984) 83.

    Google Scholar 

  32. W. H. Rhodes,ibid. 64 (1981) 19–22.

    Google Scholar 

  33. A. G. Evans,ibid. 65 (1982) 497.

    Google Scholar 

  34. G. Petzow andH. E. Exner,Z. Metallkde 67 (1976) 611.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murray, M.G.S., Wang, J., Ponton, C.B. et al. An improvement in processing of hydroxyapatite ceramics. J Mater Sci 30, 3061–3074 (1995). https://doi.org/10.1007/BF01209218

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01209218

Keywords

Navigation