Skip to main content
Log in

Stress enhanced environmental corrosion and lifetime prediction modelling in silica optical fibres

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The glass/water interaction is reviewed from early experimental work in bulk samples to the current molecular interpretation of bond rupture in that interaction. The significance of that work to static fatigue in silica optical fibres is discussed. Assumptions concerning the basic equations used to predict the rate of crack propagation, and hence, the lifetime of silica optical fibres, are questioned. Issues such as flaw distribution and the true nature of the crack tip are highlighted along with deficiencies in test methods and data analysis techniques used to obtain fibre “lifetime” parameters. These factors have resulted in no single fibre lifetime model becoming universally accepted with some 15 published lifetime models currently available. It is suggested that lifetime theory based on large, well-defined cracks in bulk material is no longer entirely sufficient to explain the static fatigue behaviour of the nanometre-sized flaws found in current optical fibres. Instead, the literature indicates a two-stage model consisting of a precursor stage followed by the currently accepted bond-rupture mechanism, to be more appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Grenet,Bull. Soc. Encour. Industr. Nat. Paris 4 (1899) 838.

    Google Scholar 

  2. R. J. Charles,J. Appl. Phys. 29 (1958) 1549.

    Google Scholar 

  3. Idem., ibid. 29 (1958) 1554.

    Google Scholar 

  4. S. M. Wiederhorn,J. Amer. Ceram. Soc. 50 (1967) 407.

    Google Scholar 

  5. S. M. Wiederhorn, S. W. Freiman, E. R. Fuller andC. J. Simmons,J. Mater. Sci. 17 (1982) 3460.

    Google Scholar 

  6. S. M. Wiederhorn,Int. J. Fracture Mechanics,4 (1968) 171.

    Google Scholar 

  7. A. G. Evans,J. Mater. Sci. 7 (1972) 1137.

    Google Scholar 

  8. M. Matsui, T. Soma andI. Oda, in “Fracture mechanics of ceramics”. Vol. 4. Edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum Press, New York, 1978).

    Google Scholar 

  9. T. C. Baker andF. W. Preston,J. Appl. Phys. 17 (1946) 170.

    Google Scholar 

  10. R. J. Charles andW. B. Hillig in Symposium on Mechanical Strength of Glass and Ways of Improving It, Florence, Italy, September (1961) p. 511.

  11. S. Glasstone, K. J. Laidler andH. Eyring, “The theory of rate processes” (McGraw-Hill, New York, 1941).

    Google Scholar 

  12. S. W. Freiman,J. Amer. Ceram. Soc. 57 (1974) 350.

    Google Scholar 

  13. H. Richter, “The physics of non-crystalline solids” (Trans. Tech. Publications, Aedermannsdorf, Switzerland, 1977).

    Google Scholar 

  14. T. A. Michalske andS. W. Freiman,Nature 295 (1982) 511.

    Google Scholar 

  15. T. A. Michalske andG. A. Fisk,J. Appl. Phys. 58 (1985) 2736.

    Google Scholar 

  16. T. A. Michalske andB. C. Bunker,ibid. 56 (1984) 2686.

    Google Scholar 

  17. K. Hirao andM. Tomozawa,J. Amer. Ceram. Soc. 70 (1987) 377.

    Google Scholar 

  18. D. Maugis,J. Mater. Sci. 20 (1985) 3041.

    Google Scholar 

  19. S. M. Wiederhorn, in “Fracture mechanics of ceramics”. Vol. 4. Edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum Press, New York, 1978).

    Google Scholar 

  20. B. R. Lawn, D. H. Roach andR. M. Thomson,J. Mater. Sci. 22 (1987) 4036.

    Google Scholar 

  21. B. R. Lawn andS. Lathabai,Materials Forum 11 (1988) 313.

    Google Scholar 

  22. J. A. Greenwood andK. L. Johnson,Phil. Mag. A43 (1981) 697.

    Google Scholar 

  23. K. Kokura, M. Tomozawa andR. K. MacCrone,J. Non-Cryst. Solids 111 (1989) 269.

    Google Scholar 

  24. W. J. Duncan, P. W. France andS. P. Craig, in “Strength of inorganic glass”, edited by C. R. Kurkjian (Plenum Press, New York, 1985).

    Google Scholar 

  25. S. W. Freiman, in “Strength of inorganic glass”, edited by C. R. Kurkjian (Plenum Press, New York, 1985).

    Google Scholar 

  26. T. A. Michalske, in “Fracture mechanics of ceramics”. Vol. 5. Edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange (Plenum Press, New York, 1983).

    Google Scholar 

  27. S. M. Wiederhorn andH. Johnson,J. Amer. Ceram. Soc. 56 (1973) 192.

    Google Scholar 

  28. C. J. Simmons andS. W. Freiman,J. Non.-Cryst. Solids 38–39 (1980) 503.

    Google Scholar 

  29. D. R. Roberts, E. Cuellar, M. T. Kennedy, et al.,Optical Eng. 30 (1991) 716.

    Google Scholar 

  30. R. D. Maurer, in “Strength of inorganic glass”, edited by C. R. Kurkjian (Plenum Press, New York, 1985).

    Google Scholar 

  31. K. T. Wan, S. Lathabai andB. R. Lawn,J. Europ. Ceram. Soc. 6 (1990) 259.

    Google Scholar 

  32. G. S. Glaesemann andS. T. Gulati,Optical Eng. 30 (1991) 709.

    Google Scholar 

  33. U. C. Paek andC. R. Kurkjian,J. Amer. Ceram. Soc. 58 (1975) 330.

    Google Scholar 

  34. H. Schonhorn, H. N. Vazirani andH. L. Frisch,J. Appl. Phys. 49 (1978) 3703.

    Google Scholar 

  35. P. S. Oh, J. J. McAlarney andD. K. Nath,J. Amer. Ceram. Soc. (Comm.) 65 (1983) C84.

    Google Scholar 

  36. P. C. P. Bouten, W. Hermann, C. M. G. Jochem andD. U. Wiechert,J. Lightwave Technol. 7 (1989) 555.

    Google Scholar 

  37. P. K. Bachmann, W. Hermann, H. Wehr andD. U. Wiechert,Appl. Optics 25 (1986) 1093.

    Google Scholar 

  38. Idem., ibid. 26 (1987) 1175.

    Google Scholar 

  39. C. R. Kurkjian andU. C. Paek,J. Amer. Ceram. Soc. 61 (1978) 176.

    Google Scholar 

  40. Y. Mohanna, J-M. Saugrain, J-C. Rousseau andP. Ledoux,J. Lightwave Tech. 8 (1990) 1799.

    Google Scholar 

  41. E. Hanson,Fiber Integrated Optics 3 (1980) 113.

    Google Scholar 

  42. T. A. Lenahan,AT&T J. 64 (1985) 1565.

    Google Scholar 

  43. E. Suhir,Polymer Eng. Sci. 30 (1990) 108.

    Google Scholar 

  44. C. E. Inglis,Trans. Inst. Naval Archit. 55 (1913) 219.

    Google Scholar 

  45. R. D. Maurer,J. Non-Cryst. Solids 42 (1980) 197.

    Google Scholar 

  46. F. A. Donaghy andD. R. Nicol,J. Amer. Ceram. Soc. 66 (1983) 601.

    Google Scholar 

  47. R. G. Huff andF. V. Dimarcello,J. Lightwave Technol. LT-3 (1985) 950.

    Google Scholar 

  48. D. P. Jablonowski, U. C. Paek andL. S. Watkins,AT&T Tech. J. 66 (1987) 33.

    Google Scholar 

  49. F. V. Dimarcello, C. R. Kurkjian andJ. C. Williams, in “Optical fiber communications. Vol. 1. Fibre fabrication” edited by Tingye Li (Academic Press, Orlando, Florida, 1985).

    Google Scholar 

  50. C. R. Kurkjian andU. C. Paek,Appl. Phys. Lett. 42 (1983) 251.

    Google Scholar 

  51. E. D. Jungbluth,Laser Focus World July (1992) 20.

    Google Scholar 

  52. N. P. Bansal andR. H. Doremus, in “Handbook of glass properties” (Academic Press, Orlando, Florida, 1986) Chapter 12.

    Google Scholar 

  53. P. C. P. Bouten andG. De With,J. Appl. Phys. 64 (1988) 3890.

    Google Scholar 

  54. C. R. Kurkjian andJ. T. Krause, in “Stress Corrosion Workshop” (National Bureau for Standards, 1982).

  55. A. A. Griffith,Proc. Roy. Soc. London Phil. Trans., Series A 221 (1921) 163.

    Google Scholar 

  56. M. J. Matthewson andC. R. Kurkjian,J. Amer. Ceram. Soc. 71 (1988) 177.

    Google Scholar 

  57. J. T. Krause andC. J. Shute,Advanced Ceram. Mater. 3 (1988) 118.

    Google Scholar 

  58. T. Wei andB. J. Skutnik,J. Non-Cryst. Solids. 102 (1988) 100.

    Google Scholar 

  59. B. J. Skutnik, B. D. Munsey andC. T. Brucker,Proc. Mater. Res. Soc. Symp. 88 (1987) 27.

    Google Scholar 

  60. V. V. Rondinella andM. J. Matthewson,SPIE 1366, “Fiber optics reliability: benign and adverse environments IV (1990) p. 77.

    Google Scholar 

  61. Y. Mitsunaga, Y. Katsuyama andY. Ishida,Electron. Lett. 17 (1981) 567.

    Google Scholar 

  62. F. P. Kapron andH. H. Yuce,Optical Eng. 30 (1991) 700.

    Google Scholar 

  63. P. W. R. Beaumont andR. J. Young,J. Mater. Sci. 10 (1975) 1334.

    Google Scholar 

  64. B. J. Pletka andS. M. Wiederhorn,ibid. 17 (1982) 1247.

    Google Scholar 

  65. M. J. Matthewson,SPIE 1580 “Fiber Optic Components and Reliability” (1991) p. 130.

    Google Scholar 

  66. T. A. Michalske andS. W. Freiman,J. Amer. Ceram. Soc. 66 (1983) 284.

    Google Scholar 

  67. D. Kalish andB. K. Tariyal,ibid. 61 (1978) 518.

    Google Scholar 

  68. W. J. Duncan,ibid. 69 (1986) C132.

    Google Scholar 

  69. K. Abe, G. S. Glaesemann, S. T. Gulati andT. A. Hanson,Optical Eng. 30 (1991) 728.

    Google Scholar 

  70. M. J. Matthewson andV. V. Rondinella,SPIE 1791 “Optical materials reliability and testing” (1992) p. 51.

    Google Scholar 

  71. W. W. Griffioen, T. Breuls, G. Cocito et al.,SPIE 1791 “Optical materials reliability and testing” (1992) p. 190.

    Google Scholar 

  72. R. H. Doremus, in “Strength of inorganic glass”, edited by C. R. Kurkjian (Plenum Press, New York, 1985).

    Google Scholar 

  73. S. Tanaka, Y. Kameo, O. Ichikawa et al.,Sumitomo Electric. Technical Rev. 21 (1982) 47.

    Google Scholar 

  74. D. Innis, C. R. Kurkjian andD. L. Brownlow,J. Amer. Ceram. Soc. 75 (1992) 3485.

    Google Scholar 

  75. Y. Hibino andH. Hanafusa,J. Appl. Phys. 61 (1987) 1806.

    Google Scholar 

  76. S. H. Garofalini, in Proceedings of the Second International Conference on Effects of Modes of Formation on the Structure of Glasses. Vanderbilt University, Nashville, TN, USA, June (1987) p. 21.

    Google Scholar 

  77. Y. Bando, S. Ito andM. Tomozawa,J. Amer. Ceram. Soc. (Comm.) 67 (1984) C-36.

    Google Scholar 

  78. T. P. Dabbs, B. R. Lawn andP. L. Kelly,Phys. Chem. of Glasses 23 (1982) 58.

    Google Scholar 

  79. P. K. Gupta, in “Strength of inorganic glass” edited by C. R. Kurkjian (Plenum Press, New York, 1985).

    Google Scholar 

  80. T. P. Dabbs andB. R. Lawn,J. Amer. Ceram. Soc. 68 (1985) 563.

    Google Scholar 

  81. W. B. Hillig andR. J. Charles, in “High strength materials”, edited by V. F. Zackey (Wiley & Sons, New York, 1965).

    Google Scholar 

  82. S. M. Wiederhorn andL. H. Bolz,J. Amer. Ceram. Soc. 53 (1970) 543.

    Google Scholar 

  83. J. E. Ritter andC. L. Sherburne,J. Amer. Ceram. Soc. 54 (1971) 601.

    Google Scholar 

  84. T. T. Wang andH. M. Zupko,J. Mater. Sci. 13 (1978) 2241.

    Google Scholar 

  85. H. C. Chandan andD. Kalish,J. Amer. Ceram. Soc. 63 (1982) 171.

    Google Scholar 

  86. M. J. Matthewson andC. R. Kurkjian,ibid. 70 (1987) 662.

    Google Scholar 

  87. J. T. Krause, L. R. Testardi andR. N. Thurston,Phys. Chem. Glasses 20 (1979) 135.

    Google Scholar 

  88. A. G. Evans andS. M. Wiederhorn,Int. J. Fracture 10 (1974) 379.

    Google Scholar 

  89. W. Griffioen, G. Segers andE. Van Loenen, in Proceedings of the Thirty-ninth International Wire and Cable Symposium, November, Reno, NV, USA (1990) p. 368.

    Google Scholar 

  90. S. T. Gulati, J. D. Helfinstine, G. S. Glaesemann et al.,SPIE 842 “Fiber optics reliability: benign and adverse environments” (1988) p. 22.

    Google Scholar 

  91. S. T. Gulati,Photonics Spectra 26 (1992) 78.

    Google Scholar 

  92. R. D. Maurer,Appl. Phys. (Lett). 27 (1975) 220.

    Google Scholar 

  93. G. I. Barenblatt,Adv. Appl. Mech. 7 (1962) 55.

    Google Scholar 

  94. S. Ito andM. Tomozawa,J. Amer. Ceram. Soc. 65 (1982) 368.

    Google Scholar 

  95. R. H. Doremus, in “Strength of inorganic glass”, edited by C. R. Kurkjian (Plenum Press, New York, 1985).

    Google Scholar 

  96. M. Tomozawa andK. Hirao,J. Non-Cryst. Solids 95–96 (1987) 149.

    Google Scholar 

  97. J. D. Helfinstine,J. Amer. Ceram. Soc. (Disc. and Notes) 63 (1980) 113.

    Google Scholar 

  98. W. Weibull,J. Appl. Mech. 18 (1951) 293.

    Google Scholar 

  99. J. E. Ritter (Jr) in “Fracture mechanics of ceramics”, Vol. 4. Edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum Press, New York, 1978).

    Google Scholar 

  100. K. Jakus, D. C. Ritter andJ. E. Ritter,J. Mater. Sci. 3 (1978) 2071.

    Google Scholar 

  101. R. H. Doremus,J. Appl. Phys. 54 (1983) 193.

    Google Scholar 

  102. J. D. Sullivan andP. H. Lauzon,J. Mater. Sci. (Lett.) 5 (1986) 1245.

    Google Scholar 

  103. G. Quinn,J. Amer. Ceram. Soc. 73 (1990) 2374.

    Google Scholar 

  104. D. R. Thoman, L. J. Bain andC. E. Antle,Technometrics 11 (1969) 445.

    Google Scholar 

  105. J. E. Ritter(Jr),N. Bandyopadhyay andK. Jakus,J. Amer. Ceram. Soc. (Disc. and Notes) 62 (1979) 542.

    Google Scholar 

  106. J. M. G. Leonardus, D. de With andG. de With,J. Amer. Ceram. Soc. 74 (1991) 2293.

    Google Scholar 

  107. R. Langliois,J. Mater. Sci. (Lett.) 10 (1991) 1049.

    Google Scholar 

  108. J. E. Ritter (Jr),N. Bandyopadhyay andK. Jakus,Ceram. Bull. 60 (1981) 798.

    Google Scholar 

  109. D. F. Jacobs andJ. E. Ritter,J. Amer. Ceram. Soc. 59 (1976) 481.

    Google Scholar 

  110. S. M. Wiederhorn, E. R. Fuller, J. Mandel andA. G. Evans,J. Amer. Ceram. Soc. 59 (1976) 403.

    Google Scholar 

  111. G. M. Bubel, J. T. Krause, B. J. Bickta andR. T. Ku,J. Lightwave Technol. 7 (1989) 1488.

    Google Scholar 

  112. EIA/TIA Standard 455-28B, “Method for measuring dynamic tensile strength of optical fibres”, October (1991).

  113. J. D. Helfinstine andF. Quan,Opt. Laser Techn. 14 (1982) 133.

    Google Scholar 

  114. C. R. Kurkjian, R. V. Albarino, J. T. Krause et al.,Appl. Phys. (Lett.) 28 (1976) 588.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostojic, P. Stress enhanced environmental corrosion and lifetime prediction modelling in silica optical fibres. J Mater Sci 30, 3011–3023 (1995). https://doi.org/10.1007/BF01209211

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01209211

Keywords

Navigation