Skip to main content
Log in

Contributions of nuclear medicine to the therapy of malignant tumors

  • Guest Editorial
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Radionuclides are applied in oncology for diagnosis and therapy. The former demands gamma — emitting radionuclides for labeling specific substrates for localizing malignant tissue and for analyzing tumor metabolism in vivo. Here, positron emission tomography (PET) may register in vivo the metabolism, for example, of glucose, amino acids, and receptors and of potentially useful cytotoxic agents. The advantage of the positron emitting radionuclides of carbon, nitrogen and fluorine is the labeling of substrates without changing substrate specificity within the metabolic reaction chain; also, substrate concentration in situ may be quantified. With regard to therapy radionuclides that emit β-and α-particles or decay by electron capture with the Auger effect, are administered in ionic form or with tumor seeking substrates. Examples are radioiodine for treating thyroid malignancy and radiophosphorus for myelopoliferative diseases. Organically bound radionuclides are given as labeled ligands for specific receptors, such as meta-iodo-benzylguanidine (MIBG) for treating the catecholamine producing tumors phaeochromocytoma and neuroblastoma and labeled monoclonal antibodies for tumors specific receptors. Highly localized energy depositions come from Auger emitters such as125I and by the neutron capture therapy, where boron-10 in the tumor cell is exposed to thermal neutrons for initiating the B10 (n; α) Li7 reaction, especially for treating neuro- and glioblastoma and melanoma. Endogenous radiotherapy with radionuclides rely on the success of delivering a proper amount of energy into individual tumor cells with optimal protection of normal tissue. The inevitable heterogeneity of energy deposition events from such approaches demands careful dosimetric assessment for which the classical methods of dosimetry for percutaneous radiotherapy are not applicable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Apelgot S, Coppey J, Gaudemers A, Grisvard J, Guille E, Sasaki I, Sissoeff I (1989) Similar lethal effect in mammalian cells for two radio-isotopes of copper with different decay schemes,64Cu and67Cu. Int J Radiat Biol 55:365–384

    PubMed  Google Scholar 

  • Barth RF, Soloway AH, Fairchild RG (1990a) Boron neutron capture therapy of cancer. Cancer Res 50:1061–1070

    PubMed  Google Scholar 

  • Barth RF, Soloway AH, Fairchild RG (1990b) Boron neutron capture therapy for cancer. Sci Am 10:68–73

    Google Scholar 

  • Beierwaltes WH (1978) The treatment of thyreoid carcinoma with radioactive iodine. Semin Nucl Med 8:79

    PubMed  Google Scholar 

  • Booz J, Paretzke HG, Pomplun E, Olko P (1987) Auger electron cascades, charge potential and microdosimetry of I-125. Radiat Environ Biophys 26:151–162

    PubMed  Google Scholar 

  • Brown I (1986) High linear energy transfer endoradiotherapeutic drugs for malignant disease. Doctoral thesis, Cambridge School of Clinical Medicine

  • Burki HJ, Roots R, Feinendegen LE, Bond VP (1973) Inactivation of mammalian cells after disintegrations of 3-H or 125-I in cell DNA at −196° C. Int J Radiat Biol 24:363–375

    Google Scholar 

  • Deshponde SV, DeNordo SJ, Kukis DL, Moi MK, McCall MJ, DeNordo GL, Meares CF (1990) Yttrium-90-labeled monoclonal antibody for therapy: labeling by a new macrocyclic bifunctional chelating agent. J Nucl Med 31:473–479

    PubMed  Google Scholar 

  • Feinendegen LE (1975) Biological damage from the Auger-effect, possible benefits. Radiat Environ Biophys 12:85–95

    PubMed  Google Scholar 

  • Feinendegen LE (1978) Biological damage from radioactive nuclei incorporated into DNA of cells; implications for radiation biology and radiation protection. Proceedings of the 6th Symposium on Microdosimetry (CEC, Bruxelles) EUR 6064 DE-EN-FR, pp 3–35

  • Gabel D, Coderre JA (1989) Neutroneneinfang-Therapie von Melanomen. Spektrum Wissenschaft 8:46–54

    Google Scholar 

  • Goldenberg DM (1979) Future role of radiolabelled monoclonal antibodies in oncological diagnosis and therapy. Semin Nucl Med 19:332–339

    Google Scholar 

  • Hall EJ (1973) Radiobiology for the radiologist. Harper & Row, Maryland

    Google Scholar 

  • Harbert JC (1987) Nuclear medicine therapy. Thieme, New York

    Google Scholar 

  • Hatanaka H, Amano K, Kanemitsu H, Ikeuchi I, Yoshizaki T (1986a) Boron uptake by human brain tumors and quality control of boron compounds. In: Hatanaka H (ed) Boron neutron capture therapy for tumors. Nishimura, Niigata, pp 77–106

    Google Scholar 

  • Hatanaka H, Kamano S, Amano K, Hojo S, Sano K, Egawa S, Yasukochi H (1986b) Clinical experience of boron neutron capture therapy for gliomas — a comparison with conventional chemo-immuno-radiotherapy. In: Hatanaka H (ed) Boron neutron capture therapy for tumors. Nishimura, Niigata, pp 349–378

    Google Scholar 

  • Ichihashi M, Nakanishi T, Mishima Y (1982) Specific killing effect of 10B-para-broronophenylalanine in thermal neutron capture therapy of malignant melanoma: in vitro radiobiological evaluation. J Invest Dermatol 78:215–218

    PubMed  Google Scholar 

  • Jacobson HG (1988) Positron emission tomography in oncology. J Am Med Assoc 259:2126–2130

    Google Scholar 

  • Langen KJ, Roosen N, Kuwert T, Herzog H, Kiwit JCW, Rota-Kops E, Muzik O, Bock WJ, Feinendegen LE (1989) Early effects of intraarterial chemotherapy in patients with brain tumours studied with PET: preliminary results. Nucl Med Commun 10:779–790

    PubMed  Google Scholar 

  • Linz U, Stöcklin G (1985) Chemical and biological consequences of the radioactive decay of iodine-126 in plasmid DNA. Radiat Res 101:262–278

    PubMed  Google Scholar 

  • Lueders Ch, Kopec M, Morstin K, Schmitz Th, Feinendegen LE (1992) Die Radiosynoviorthese — Anwendung und Durchführung unter besonderer Berücksichtigung dosimetrischer Aspekte. Akt Rheumatol 17:74–81

    Google Scholar 

  • Meyer G-J, Schober O (1991) Evaluation of brain tumors by PET. In: Diksic M, Reba RG (eds) Radiopharmaceutical and brain pathology studied with PET and SPECT. CRC, Boca Raton, pp 303–336

    Google Scholar 

  • Mintun MA, Welch MJ, Siegel BA, Mathias CJ, Brodack JW, McGuire AH, Katzenellenbogen JA (1988) Breast cancer: PET imaging of estrogen receptors. Radiology 169:45–48

    PubMed  Google Scholar 

  • Mishima Y, Ichihashi M, Tsui M, Hatta S, Ueda M, Honda C, Suzuki T (1989) Treatment of malignant melanoma by single thermal neutron capture therapy with melanoma-seeking 10B-compound. Lancet 2:388–389

    PubMed  Google Scholar 

  • Morstin K, Kawecha B, Feinendegen LE (1985) Depth dose optimisation for neutron capture therapy. Proceedings of the 5th Symposium on Neutron Dosimetry (CEC, Luxembourg) EUR 9762, pp 1073–1085

  • Pomplun E (1987) Mikrodosimetrische Berechnungen der Energiedeposition und des Dosisgrenzwertes nach Zerfall von Radionukliden in biologischen Systemen. Universität Düsseldorf, Mathem Nat Fakultät

  • Scherer E (ed) (1989) Proceedings of the 3rd International Symposium on Neutron Capture Therapy, Strahlenther Onkol 165:65–258

  • Soloway AH, Hatanka H, Davis MA (1967) Penetration of brain and brain tumor: VII. Tumor-binding sulfhydryl boron compounds. J Med Chem 10:714–717

    PubMed  Google Scholar 

  • Tyler JL, Yamamoto YL, Diksic M, Théron J, Villemure JG, Worthington D, Evans AC, Feindel W (1986) Pharmakokinetics of superselective intra-arterial and intravenous11C-BCNU evaluated by PET. J Nucl Med 27:775–780

    PubMed  Google Scholar 

  • Wieland DM, Wu JI, Brown LE, MJangner TJ, Swanson DP, Beierwaltes WH (1980) Radiolabelled adrenergic neutron-blocking agents: adrenomedullary imaging with 131-I-iodobenzylguanidine. J Nucl Med 21:349–353

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The “Journal of Cancer Research and Clinical Oncology” publishes in loose succession “Editorials” and “Guest editorials” on current and/or controversial problems in experimental and clinical oncology. These contributions represent exclusively the personal opinion of the author The Editors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feinendegen, L.E. Contributions of nuclear medicine to the therapy of malignant tumors. J Cancer Res Clin Oncol 119, 320–322 (1993). https://doi.org/10.1007/BF01208838

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01208838

Key words

Navigation