Skip to main content
Log in

Characteristics of Cl-dependentl-[35S]cysteic acid transport into rat brain synaptic membrane vesicles

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Uptake ofl-[35S]cysteic acid (L-CA) in rat synaptic membrane vesicles was investigated. Preincubation with either 10 mMl-glutamic acid (L-Glu), 25 mM L-CA, 10 mMdl-homocysteic acid, or 25 mMdl-2-amino-4-phosphonobutyrate on membrane vesicles enhanced L-[35S]CA and L-[3H]Glu uptake. Na+ (5 mM) and omission of Cl from the assay medium decreased L-[35S]CA uptake into both 10 mM L-Glu-loaded and non-loaded membrane vesicles. The anion transport blockers, 4-acetamide-4′-isothiocyano-2,2′-disulfonic acid stibene (SITS) and 4,4′-diisothiocyano-2,2′-disulfonic acid stilbene (DIDS), inhibited L-[35S]CA uptake in a dose-dependent manner. The maximal uptake rate for L-[35S]CA was decreased by 50 μM SITS, while the apparent Km value of L-CA was not changed. SITS increased the EC50 value of Cl for L-[35S]CA uptake from 5 mM to 10 mM with reduction of the maximal effect. These results suggested that L-[35S]CA uptake into synaptic membrane vesicles was mediated by a SITS-sensitive hetero-exchange transport with non-labeled substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SITS:

4-Acetamide-4′-isothiocyano-2,2′-disulfonic acid stilbene

DIDS:

4,4′-Diisothiocyano-2,2′-disulfonic acid stilbene

CA:

Cysteic acid

APB:

2-Amino-4-phosphonobutyrate

CSA:

Cysteine sulfinic acid

EGTA:

Ethyleneglycol bis(aminoethylether) tetraacetate

GABA:

γ-Aminobutyric acid

References

  1. Kanner, B. I. 1983. Bioenergetics of neurotransmitter transport. Biochim. Biophys. Acta. 726:294–316.

    Google Scholar 

  2. Sanchez-Prieto, J., and Gonzalez, P. 1988. Occurrence of a large Ca2+-independent release of glutamate during anoxia in isolated nerve terminals (synaptosomes). J. Neurochem. 50:1322–1324.

    Google Scholar 

  3. Silverstein, F. S., Buchanan, K., and Johnston, M. V. 1986. Perinatal hypoxia-ischemia disrupts striatal high-affinity3H glutamate uptake into synaptosomes. J. Neurochem. 47:1614–1619.

    Google Scholar 

  4. Waniewski, R. A., and Martin, D. L. 1984. Characterization ofl-glutamic acid transport by glioma cells in culture: Evidence for sodium-independent, chloride-dependent high-affinity influx. J. Neurosci. 4:2237–2246.

    Google Scholar 

  5. Naito, S., and Ueda, T. 1985. Characterization of glutamate uptake into synaptic vesicles. J. Neurochem. 44:99–109.

    Google Scholar 

  6. Kuhar, M. J., and Zarbin, M. A. 1978. Synaptosomal transport: A chloride dependence for choline, GABA, glycine and several other compounds. J. Neurochem. 31:251–256.

    Google Scholar 

  7. Iwata, H., Koyama, Y., and Baba, A. 1989. Depolarization increases chloride-dependent glutamate sequestration in synaptic membranes of rat cerebral cortex. J. Neurochem. 52:354–359.

    Google Scholar 

  8. Lynch, G., Halpain, S., and Baudry, M. 1982. Effects of high-frequency synaptic stimulation on glutamate receptor binding studied with a modified in vitro hippocampal slice preparation. Brain Res. 244:101–111.

    Google Scholar 

  9. Savage, D. D., Werling, L. L., Nadler, J. V., and McNamara, J. O. 1984. Selective and reversible increase in the number of quisqualate-sensitive glutamate binding sites on hippocampal synaptic membranes after angular bundle kindling. Brain Res. 307:332–335.

    Google Scholar 

  10. Balcar, V. J., Borg, J., and Mandel, P. 1977. High affinity uptake ofl-glutamate andl-aspartate by glial cells. J. Neurochem. 28:87–93.

    Google Scholar 

  11. Balcar, V. J., and Johnston, G. A. R. 1972. The structural specificity of the high affinity uptake ofl-glutamate andl-aspartate by brain slices. J.Neurochem. 19:2657–2666.

    Google Scholar 

  12. Iwata, H., Yamagami, S., Mizuo, H., and Baba, A., 1982. Cysteine sulfinic acid in the central nervous system: Uptake and release of cysteine sulfinic acid by a rat brain preparation. J. Neurochem. 38:1268–1274.

    Google Scholar 

  13. Wilson, D. F., and Pastuszko, A. 1986. Transport of cystate by synaptosomes isolated from rat brain: Evidence that it utilizes the same transporter as aspartate, glutamate and cysteine sulfinate. J. Neurochem. 47:1091–1097.

    Google Scholar 

  14. Koyama, Y., Baba, A., and Iwata, H. 1989. L-[35S]-Cysteic acid selectively detects chloride-dependentl-glutamate transporters in synaptic membrane. Brain Res. 487:113–119.

    Google Scholar 

  15. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  16. Kanner, B. I. 1978. Active transport of γ-aminobutyric acid by membrane vesicles isolated from rat brain. Biochemistry. 17:1207–1211.

    Google Scholar 

  17. Bridges, R. J., Hearn, T. J., Monaghan, D. T., and Cotman, C. W. 1986. A comparison of 2-amino-4-phosphonobutyric acid (AP4) receptors and [3H]AP4 binding sites in the rat brain. Brain Res. 375:204–209.

    Google Scholar 

  18. Kessler, M., Petersen, G., Vu, H. M., Baudry, M., and Lynch, G. 1987. L-Phenylalanyl-L-glutamate-stimulated, chloride-dependent glutamate binding represents glutamate sequestration mediated by an exchange system. J. Neurochem. 48:1191–1200.

    Google Scholar 

  19. Agullo, L., Jimenez, B., Aragon, C., and Gimenez, C. 1986. β-Alanine transport in synaptic plasma membrane vesicles from rat brain, Efflux, exchange and stoichiometry. Eur. J. Biochem. 159:611–617.

    Google Scholar 

  20. Recasens, M., Pin, J-P., and Bockaert, J. 1987. Chloride transport blockers inhibit the chloride-dependent glutamate binding to rat brain membranes. Neurosci. Lett. 74:211–216.

    Google Scholar 

  21. Cabantchik, Z. I., Knauf, P. A., and Rothstein, A. 1978. The anion transport system of the red blood cell: The role of membrane protein evaluated by the use of ‘probes’. Biochim. Biophys. Acta. 515:239–302.

    Google Scholar 

  22. Cabantchik, Z. I., and Rothstein, A. 1972. The nature of the membrane sites controlling anion permeability of human red blood cells as determined by studies with disulfonic stibene derivatives. J. Membrane. Biol. 10:311–330.

    Google Scholar 

  23. White, M. M., and Miller, C. 1979. A voltage-gated anion channel from the electric organ ofTorpedo californica. J. Biol. Chem. 254:10161–10166.

    Google Scholar 

  24. Wolpaw, E. W., and Martin, D. L. 1984. Cl transport in a glioma cell line: Evidence for two transport mechanisms. Brain Res. 297:317–327.

    Google Scholar 

  25. Knauf, P. A., and Rothstein, A. 1971. Chemical modification of membranes. I. Effects of sulfhydryl and amino reactive reagents on anion and cation permeability of the human red blood cell. J. Gen. Physiol. 58:190–210.

    Google Scholar 

  26. Lingle, C., and Marder, E. 1981. A glutamate-activated chloride conductance on a crustacean muscle. Brain Res. 212:481–488.

    Google Scholar 

  27. Olney, J. W., Prince, M. T., Samson, L., and Labruyere, J. 1986. The role of specific ions in glutamate neurotoxicity. Neurosci. Lett. 65:65–71.

    Google Scholar 

  28. Rothman, S. M. 1985. The neurotoxicity of excitatory amino acids is produced by passive chloride influx. J. Neurosci. 5:1483–1489.

    Google Scholar 

  29. Baba, A., Nishiuchi, Y., Uemura, A., and Iwata, H. 1988. Mechanism of excitatory amino acid-induced accumulation of cyclic AMP in hippocampal slices: Role of extracellular chloride. J. Pharmacol. Exp. Ther. 245:299–304.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koyama, Y., Baba, A. & Iwata, H. Characteristics of Cl-dependentl-[35S]cysteic acid transport into rat brain synaptic membrane vesicles. Neurochem Res 15, 1153–1158 (1990). https://doi.org/10.1007/BF01208574

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01208574

Key Words

Navigation