Abstract
We derive the Vlasov hydrodynamics from the microscopic equations of a quantum mechanical model, which simulates that of an assembly of gravitating particles. In addition we show that the local microscopic dynamics of the model corresponds, on a suitable time-scale, to that of an ideal Fermi gas.
Similar content being viewed by others
References
Hepp, K., Lieb, E.: Helv. Phys. Acta46, 573–603 (1973)
Martin, Ph.: Modèles en mechanique statistique des processus irreversibles. Lecture Notes in Physics 103, Berlin, Heidelberg New York: Springer 1979
Torres, P. L.: J. Math. Phys.18, 301–305 (1977)
Braun, W., Hepp, K.: Commun. Math. Phys.56, 101–114 (1977)
Narnhofer, H., Sewell, G. L.: Commun. Math. Phys.71, 1–28 (1980)
Narnhofer, H., Thirring, W.: Asymptotic exactness of finite temperature Thomas—Fermi theory, in press (Ann. Phys.)
Emch, G. G.: Algebraic methods in statistical mechanics and quantum field theory. New York, NY: Wiley-Interscience 1972
Neunzert, H.: Neuere qualitative and numerische methoden in der Plasmaphysik. Vorlesungsmanuskript Paderborn, 1975
Author information
Authors and Affiliations
Additional information
Communicated by J. L. Lebowitz
Work supported in part by “Fonds zur Förderung der wissenschaftlichen Forschung in Osterreich”, Project number 3569
Rights and permissions
About this article
Cite this article
Narnhofer, H., Sewell, G.L. Vlasov hydrodynamics of a quantum mechanical model. Commun.Math. Phys. 79, 9–24 (1981). https://doi.org/10.1007/BF01208282
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01208282