Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Origins of life
  3. Article

The iron-sulphur proteins: Evolution of a ubiquitous protein from model systems to higher organisms

  • Part V / Early Biochemical Evolution
  • Published: July 1974
  • Volume 5, pages 363–386, (1974)
  • Cite this article
Download PDF
Origins of life Aims and scope Submit manuscript
The iron-sulphur proteins: Evolution of a ubiquitous protein from model systems to higher organisms
Download PDF
  • D. O. Hall1,
  • R. Cammack1 &
  • K. K. Rao1 
  • 74 Accesses

  • 24 Citations

  • Explore all metrics

Abstract

Ferredoxins are Fe−S proteins with low molecular weight (6–12000) which act as electron carriers at very low redox potentials eg. −300 to −500 mV, in diverse biochemical processes such as bacterial and plant photosynthesis, N2 fixation, carbon metabolism, oxidative phosphorylation and steroid hydroxylation. They are found in a wide range of organisms from the ‘primitive’ obligate anaerobic bacteria, through photosynthetic bacteria, blue-green and green algae, to all higher plants and animals. Three types of ferredoxins are known −8 Fe+8 S, 4 Fe+4 S and 2 Fe+2 S. All three have been found in bacteria while the 2 Fe and some 8 Fe ferredoxins have been found in plants and animals possibly representing an evolutionary sequence. The 8 Fe ferredoxin may all be composed of two 4 Fe units. We have proposed that because of the simplicity of the 8 Fe ferredoxins (only 9 common simple amino acids in clostridia, 6 of which have been detected in the Murchison meteorite) they may have been amongst the earliest proteins formed during the origin of life. A simple peptide of about 27 amino acids could incorporate inorganic Fe+S (or possibly an existing Fe−S complex) into it nonenzymatically under anaerobic conditions to form a protein carrying one or two electrons at the potential of the H2 electrode. More than ten Fe−S model compounds have been proposed as analogues of the 4 Fe or 2 Fe containing active centres; inorganic, organometallic and peptide complexes have been synthesized. A few have many of the properties of ferredoxins but none as yet fulfills a sufficient number of criteria to substitute for ferredoxins chemically and biologically — a goal which will provide many clues to primitive peptide systems undergoing biological electron transfer reactions.

Article PDF

Download to read the full article text

Similar content being viewed by others

Ferritins: furnishing proteins with iron

Article Open access 29 January 2016

Justin M. Bradley, Nick E. Le Brun & Geoffrey R. Moore

The dual function of flavodiiron proteins: oxygen and/or nitric oxide reductases

Article 14 January 2016

Célia V. Romão, João B. Vicente, … Miguel Teixeira

Mammalian iron–sulphur proteins: novel insights into biogenesis and function

Article 26 November 2014

Tracey A. Rouault

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Hall, D. O. and Evans, M. C. W.: 1969,Nature 223, 1342.

    PubMed  Google Scholar 

  2. Tsibris, J. C. M. and Woody, R.: 1970,Coordin. Chem. Rev. 5, 417.

    Google Scholar 

  3. Buchanan, B. B. and Arnon, D. I.: 1970,Adv. Enzym. 33, 119.

    Google Scholar 

  4. Buchanan, B. B. and Arnon, D. I.: 1971,Meth. Enzymol. 23, 413.

    Google Scholar 

  5. Yoch, D. C. and Valentine, R. C. 1972,Ann. Rev. Microbiol. 26, 139.

    Google Scholar 

  6. Hall, D. O., Cammack, R., and Rao, K. K.: 1973,Pure Appl. Chem. 34, 553.

    Google Scholar 

  7. Hall, D. O., Cammack, R., and Rao, K. K.: 1973, ‘Non-haem Iron Proteins,’ Chapter 8 in A. Jacobs (ed.),Iron in Biochemistry and Medicine, Academic Press, London (in press).

    Google Scholar 

  8. Hall, D. O., Cammack, R., and Rao, K. K.: 1971,Nature 233, 136.

    PubMed  Google Scholar 

  9. Lipmann, F.: 1972, in A. Buvet and C. Ponnamperuma (eds.),Chemical Evolution and the Origin of Life, North-Holland, Amsterdam.

    Google Scholar 

  10. Matsubara, H.: 1972,Aspects Cell Mol. Physiol. 19, 31.

    Google Scholar 

  11. Dayhoff, M. O.: 1972,Atlas of Protein Sequence and Structure 5, Natl. Biomed. Res. Fndn., Georgetown University, Medical Center, Washington, D.C., 20007 U.S.A.

    Google Scholar 

  12. Hall, D. O., Cammack, R., and Rao, K. K.: 1973,Space Life Sc., (in press).

  13. Orme-Johnson, W. H.: 1972,Biochem. Soc. Trans. 1, 30.

    Google Scholar 

  14. Malkin, R. and Rabinowitz, J. C.: 1966,Biochem. Biophys. Res. Comm. 23, 822.

    PubMed  Google Scholar 

  15. Hong, J. S. and Rabinowitz, J. C.: 1967,Biochem. Biophys. Res. Comm. 29, 246.

    PubMed  Google Scholar 

  16. Hall, D. O., Cammack, R., and Rao, K. K.: 1972a, in A. W. Schwartz (ed.),Theory and Experiment in Exobiology 2, p. 67.

  17. Rickard, D. T.: 1969,Stockholm Contrib. Geol. 20, 50.

    Google Scholar 

  18. Blomstrom, D. C., Knight, E., Phillips, W. D., and Weiher, J. F.: 1964,Proc. Nat. Acad. Sci. U.S.A. 51, 1085.

    Google Scholar 

  19. Cowan, D. O., Pasternak, G., and Kaufman, F.: 1970,Proc. Nat. Acad. Sci. U.S.A. 66, 837.

    Google Scholar 

  20. Rubinson, K. A. and Palmer, G.: 1972,J. Am. Chem. Doc. 94, 8375.

    Google Scholar 

  21. Yang, C. S. and Huennekens, F. M.: 1970,Biochem. 9, 2127.

    Google Scholar 

  22. Sugiura, Y. and Tanaka, H.: 1972,Biochem. Biophys. Res. Comm. 46, 335.

    PubMed  Google Scholar 

  23. Sugiura, Y., Kurishima, M., and Tanaka, H.: 1972,Biochem. Biophys. Res. Comm. 48, 1400.

    PubMed  Google Scholar 

  24. Ali, A., Fahrenbols, F., Goring, J. C., and Weinstein, B.: 1972,J. Am. Chem. Soc. 94, 2556.

    PubMed  Google Scholar 

  25. Coucouvanis, D., Lippard, S. J., and Zubieta, J. A.: 1970,J. Am. Chem. Soc. 92, 3342

    Google Scholar 

  26. Balch, A. L.: 1969,J. Am. Chem. Soc. 91, 6962.

    Google Scholar 

  27. Bernal, I., Davis, B. R., Good, M. L., and Chandra, S.: 1972,J. Coord. Chem. 2, 61.

    Google Scholar 

  28. Herskovitz, T., Averill, B. A., Holm, R. H., Ibers, J. A., Phillips, W. D., and Weiher, J. F.: 1972,Proc. Nat. Acad. Sci. U.S.A. 69, 2437.

    Google Scholar 

  29. Schunn, R. A., Fritchie, C. J., and Prewitt, C. T.: 1966,Inorg. Chem. 5, 892.

    Google Scholar 

  30. Wei, C. H., Wilkes, G. R., Treichel, P. M., and Dahl, L. F.: 1966,Inorg. Chem. 5, 900.

    Google Scholar 

  31. Connelly, N. G. and Dahl, L. F.: 1970,J. Am. Chem. Soc. 92, 7472.

    Google Scholar 

  32. Bayer, E., Eckstein, H., Hagenmaier, H., Josef, D., Koch, J., Krauss, P., Röder, A. and Schretzmann, P.: 1969,Eur. J. Biochem. 8, 33.

    PubMed  Google Scholar 

  33. Kubas, G. T., Spiro, T. G., and Terzis, A.: 1973,J. Am. Chem. Soc. 95, 273.

    PubMed  Google Scholar 

  34. Schneider, J., Dischler, B., and Räuber, A.: 1968,J. Phys. Chem. Solids 29, 451.

    Google Scholar 

  35. Jensen, L. H., Sieker, L. C., Watenpaugh, K. D., Adman, E. T., and Herriott, J. R.: 1973,Biochem. Soc. Trans. 1, 27.

    Google Scholar 

  36. Poe, M., Phillips, W. D., McDonald, C. C., and Lovenberg, W.: 1970,Proc. Nat. Acad. Sci. U.S.A. 65, 797.

    Google Scholar 

  37. Travis, J., Newman, D. J., LeGall, J., and Peck, H. D.: 1971,Biochem. Biophys. Res. Comm. 45, 452.

    PubMed  Google Scholar 

  38. Shethna, Y. I., Stombaugh, N. A., and Burris, R. H.: 1971,Biochem. Biophys. Res. Comm. 42, 1108.

    PubMed  Google Scholar 

  39. Yoch, D. C. and Valentine, R. C.: 1972,J. Bacteriol. 110, 1211.

    PubMed  Google Scholar 

  40. Johnson, P. W. and Canale-parole, E.: 1973,Arch. Mikrobiol. 89, 341.

    PubMed  Google Scholar 

  41. Broda, E.: 1970,Progr. Biophys. Mol. Biol. 21, 143.

    Google Scholar 

  42. Schlegel, H. G.: 1971, ‘Origin of Life and Evolutionary Biochemistry’, Int. Symp., Varna, Bulgaria.

  43. Yamanaka, T.: 1972,Adv. Biophys. 3, 229.

    Google Scholar 

  44. Dus, K., Tedro, S., Bartsch, R. G., and Kamen, M. D.: 1971,Biochem. Biophys. Res. Comm. 43, 1239.

    PubMed  Google Scholar 

  45. Bartsch, R. G.: 1971,Methods Enzymol. 23, 644.

    Google Scholar 

  46. Carter, C. W., Freer, S. T., Xuong, Ng. H., Alden, R. A., and Kraut, J.: 1971,Cold Spring Harbour Symp. Quant. Biol. 36, 381.

    Google Scholar 

  47. Carter, C. W., Kraut, J., Freer, S. T., Alden, R. A., Sieker, L. C., Adman, E., and Jensen, L. H.: 1972,Proc. Nat. Acad. Sci. U.S.A. 69, 3526.

    Google Scholar 

  48. Evans, M. C. W., Lord, A. V., and Reeves, S. G.: 1973,Biochem. J. (in press).

  49. Malkin, R. and Bearden, A. J.: 1971,Proc. Nat. Acad. Sci. U.S.A. 68, 16.

    Google Scholar 

  50. Bearden, A. J. and Malkin, R.: 1972,Biochem. Biophys. Res. Comm. 46, 1299.

    PubMed  Google Scholar 

  51. Evans, M. C. W., Telfer, A., and Lord, A. V.: 1972,Biochem. Biophys. Acta 267, 530.

    PubMed  Google Scholar 

  52. Aggarwal, S. J., Rao, K. K., and Matsubara, H.: 1971,J. Biochem. Tokyo 69, 601.

    PubMed  Google Scholar 

  53. Rao, K. K., Cammack, R., Hall, D. O., and Johnson, C. E.: 1971,Biochem. J. 122, 259.

    Google Scholar 

  54. Gibson, J. F., Hall, D. C., Thornley, J. H. M., and Whatley, F. R.: 1966,Proc. Nat. Acad. Sci. U.S.A. 56, 987.

    Google Scholar 

  55. Fritz, J., Anderson, R., Fee, J., Palmer, G., Sands, R. H., Tsibris, J. C. M., Gunsalus, I. C., Orme-Johnson, W. H., and Beinert, H.: 1971,Biochim. Biophys. Acta 253, 110.

    PubMed  Google Scholar 

  56. Dunham, W. R., Bearden, A. J., Salmeen, I. T., Palmer, G., Sands, R. H., Orme-Johnson, W. H., and Beinert, H.: 1971,Biochim. Biophys. Acta 253, 134.

    PubMed  Google Scholar 

  57. Cammack, R., Rao, K. K., Hall, D. O., and Johnson, C. E.: 1971,Biochem. J. 125, 849.

    PubMed  Google Scholar 

  58. Johnson, C. E., Cammack, R., Rao, K. K., and Hall, D. O.: 1971,Biochem. Biophys. Res. Comm. 43, 564.

    PubMed  Google Scholar 

  59. Munck, E., Debrunner, P. G., Tsibris, J. C. M., and Gunsalus, I. C.: 1972,Biochemistry 11, 855.

    PubMed  Google Scholar 

  60. Mitsui, A. and Arnon, D. I.: 1971,Physiol. Plant. 25, 135.

    Google Scholar 

  61. Rao, K. K., Smith, R. V., Cammack, R., Evans, M. C. W., Hall, D. O., and Johnson, C. E.: 1972,Biochem. J. 129, 1159.

    PubMed  Google Scholar 

  62. Sagan, L.: 1967,J. Theor. Biol. 14, 225.

    Google Scholar 

  63. Taylor, D. L.: 1970,Int. Rev. Cyt. 27, 29.

    Google Scholar 

  64. Hall, D. O., Rao, K. K., and Cammack, R.: 1972,Biochem. Biophys. Res. Comm. 47, 798.

    PubMed  Google Scholar 

  65. Schopf, W. and Blacic, J. M.: 1971,J. Paleont. 45, 925.

    Google Scholar 

  66. Kimura, T.: 1968,Structure Bonding 5, 1.

    Google Scholar 

  67. Eaton, W. A., Palmer, G., Fee, J. A., Kimura, T., and Lovenberg, W.: 1971,Proc. Nat. Acad. Sci. U.S.A. 68, 3015.

    Google Scholar 

  68. Barker, W. C., McLaughlin, P. J., and Dayhoff, M. O.: 1972,Fed. Proc., Abs. 837, No. 3514.

  69. Rieske, J. S., Zaugg, W. S., and Hansen, R. E.: 1964,J. Biol. Chem. 239, 3023.

    PubMed  Google Scholar 

  70. Tanaka, M., Haniu, M., and Yasunobu, K. T.: 1973,J. Biol. Chem. 248, 1141.

    PubMed  Google Scholar 

  71. Davis, K. A. and Hatefi, Y.: 1971,Biochemistry 10, 2509.

    PubMed  Google Scholar 

  72. Gunsalus, I. C., Lipscomb, J. D., Marshall, V., Frauenfelder, H., Munck, E., and Greenbaum, E.: 1972, in G. S. Boyd and R. M. S. Smellie (eds.),Biological Hydroxylation Mechanisms, Academic Press.

  73. Tsai, R. L., Gunsalus, I. C., and Dus, K.: 1971,Biochem. Biophys. Res. Comm. 45, 1300.

    PubMed  Google Scholar 

  74. Benson, A. M., Tomoda, K., Chang, J., Matsueda, G., Lode, E. T., Coon, M. J., and Yasunobu, K. T.: 1971,Biochem. Biophys. Res. Comm. 42, 640.

    PubMed  Google Scholar 

  75. Meyer, T. E., Sharp, J. J., and Bartsch, R. G.: 1971,Biochim. Biophys. Acta 234, 266.

    PubMed  Google Scholar 

  76. Rao, K. K., Evans, M. C. W., Cammack, R., Hall, D. O., Thompson, C. L., Jackson, P. V., and Johnson, C. E.: 1972,Biochem. J. 129, 1063.

    PubMed  Google Scholar 

  77. Herriott, J. R., Sieker, L. C., Jensen, L. H., and Lovenberg, W.: 1970,J. Mol. Biol. 50, 391.

    PubMed  Google Scholar 

  78. Watenpaugh, K. D., Sieker, L. C., Herriott, J. R., and Jensen, L. H.: 1971,Cold Spring Harbor Symp. Quant. Biol. 36, 359.

    Google Scholar 

  79. Blumberg, W. E.: 1967, in A. Ehrenberg, B. G. Malström, and T. Vanngard (eds.),Magnetic Resonance in Biological Systems, p. 119, Pergamon Press, Oxford.

    Google Scholar 

  80. Poe, M., Phillips, W. D., Glickson, J. D., McDonald, C. C., and San Pietro, A.: 1971,Proc. Nat. Acad. Sci. U.S.A. 68, 68.

    Google Scholar 

  81. Lode, E. T. and Coon, M.: 1971,J. Biol. Chem. 246, 791.

    PubMed  Google Scholar 

  82. Boyer, R. F., Lode, E. T., and Coon, M. J.: 1971,Biochem. Biophys. Res. Comm. 44, 925.

    PubMed  Google Scholar 

  83. Edmondson, D., Massey, V., Palmer, G., Beecham, L. M., and Elion, G. B.: 1972,J. Biol. Chem. 247, 1597.

    PubMed  Google Scholar 

  84. Lowe, D. V., Lynden-Bell, R. M., and Bray, R. C.: 1972,Biochem. J. 130, 239.

    PubMed  Google Scholar 

  85. Gibson, J. F. and Bray, R. C.: 1968,Biochim. Biophys. Acta 153, 721.

    PubMed  Google Scholar 

  86. Johnson, C. E., Bray, R. C., Cammack, R., and Hall, D. O.: 1969,Proc. Nat. Acad. Sci. U.S.A. 63, 1234.

    Google Scholar 

  87. Garbett, K., Gillard, R. D., Knowles, P. F., and Stangroom, J. E.: 1967,Nature,215, 824.

    PubMed  Google Scholar 

  88. Mortenson, L. E., Zumft, E. G., Huang, T. C., and Palmer, G.: 1973,Biochem. Soc. Trans. 1, 35.

    Google Scholar 

  89. Eady, R. R., Smith, B. E., Thorneley, R. N. F., Ware, D. A., and Postgate, J. R.: 1973,Biochem. Soc. Trans. 1, 37.

    Google Scholar 

  90. Burns, R. C., Holsten, R. D., and Hardy, R. W. F.: 1970,Biochem. Biophys. Res. Comm. 39, 90.

    PubMed  Google Scholar 

  91. Benemann, J. R., Yoch, D. C., Valentine, R. C., and Arnon, D. I.: 1971,Biochim. Biophys. Acta 226, 205.

    PubMed  Google Scholar 

  92. Smith, R. V., Noy, R. J., and Evans, M. C. W.: 1971,Biochem. Biophys. Res. Comm. 253, 104.

    Google Scholar 

  93. Winter, H. C. and Arnon, D. I.: 1970,Biochim. Biophys. Acta 197, 170.

    PubMed  Google Scholar 

  94. Evans, M. C. W., Telfer, A., and Smith, R. V.: 1973,Biochem. Biophys. Acta 310, 344.

    PubMed  Google Scholar 

  95. Van Tamelen, E. E., Gladysz, J. A., and Miller, J. S.: 1973,J. Am. Chem. Soc. 95, 1347.

    PubMed  Google Scholar 

  96. Davis, K. A. and Hatefi, Y.: 1971,Biochemistry 10, 2509.

    PubMed  Google Scholar 

  97. Shanmugam, K. T., and Arnon, D. I.: 1972,Biochim. Biophys. Acta 256, 489.

    Google Scholar 

  98. Hatefi, Y., Davis, K. A., Baltscheffsky, H., Baltscheffsky, M., and Johansson, B. C.: 1972,Arch. Biochem. Biophys. 152, 613.

    PubMed  Google Scholar 

  99. Cammack, R.: 1973,Biochem. Biophys. Res. Comm. 54, 548.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. King's College, Dept. of Botany, University of London, SE24 9JF, London, England

    D. O. Hall, R. Cammack & K. K. Rao

Authors
  1. D. O. Hall
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. R. Cammack
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. K. K. Rao
    View author publications

    You can also search for this author in PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, D.O., Cammack, R. & Rao, K.K. The iron-sulphur proteins: Evolution of a ubiquitous protein from model systems to higher organisms. Origins Life Evol Biosphere 5, 363–386 (1974). https://doi.org/10.1007/BF01207637

Download citation

  • Issue Date: July 1974

  • DOI: https://doi.org/10.1007/BF01207637

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Electron Transfer Reaction
  • Photosynthetic Bacterium
  • Plant Photosynthesis
  • Peptide System
  • Ubiquitous Protein
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

5.135.140.155

Not affiliated

Springer Nature

© 2024 Springer Nature