Skip to main content

On the cardinality of ideals in artinian rings

This is a preview of subscription content, access via your institution.


  1. Dinh van Huynh, A note on artinian rings. Arch. Math.33, 546–553 (1979).

    Google Scholar 

  2. Dinh van Huynh, Some conditions for the existence of a right identity in a ring. Ann. Univ. Sc. Budapest. Eötvös Sect. Math.22, 87–98 (1979/80).

    Google Scholar 

  3. Dinh van Huynh, Some characterizations of hereditarily artinian rings. Glasgow Math. J.28, 21–23 (1986).

    Google Scholar 

  4. Dinh van Huynh andNguyen V. Dung, A characterization of artinian rings. Glasgow Math. J.30, 67–73 (1988).

    Google Scholar 

  5. C. Faith, The maximal regular ideal of self-injective and continuous rings splits off. Arch. Math.44, 511–521 (1985).

    Google Scholar 

  6. A. Kerteśz andA. Widiger, Artinsche Ringe mit artinschem Radikal. J. Reine Angew. Math.242, 8–15 (1970).

    Google Scholar 

  7. J. Lawrence, A countable self-injective ring is quasi-Frobenius. Proc. Amer. Math. Soc.65, 217–220 (1977).

    Google Scholar 

  8. Ch. Meggibben, Countable self-injective modules are sigma injective. Proc. Amer. Math. Soc.84, 8–10 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

van Huynh, D., Dung, N.V. On the cardinality of ideals in artinian rings. Arch. Math 51, 213–216 (1988).

Download citation

  • Received:

  • Issue Date:

  • DOI:


  • Artinian Ring