Skip to main content
Log in

UVB radiation affects the mobility of epidermal growth factor receptors in human keratinocytes and fibroblasts

  • Short Papers
  • Published:
Bioscience Reports

Abstract

Growth factor receptors transmit biological signals for the stimulation of cell growth in vitro and in vivo and their autocrine stimulation may be involved in tumorigenesis. It is therefore, of great value to understand receptor reactions in response to ultraviolet (UV) light which certain normal human cells are invaribly exposed to during their growth cycle. UV irradiation has recently been shown to deplete antioxidant enzymes in human skin. The aims of the present study were a) to compare the lateral mobility of epidermal growth factor receptors (EGF-R) in cultured human keratinocytes and human foreskin fibroblasts, b) to investigate effects of ultraviolet B radiation on the mobility of EGF-R in these cells, and c) study the response of EGF-R on addition of antioxidant enzymes. The epidermal growth factor receptors were labeled with rhodaminated EGF, the lateral diffusion was determined and the fraction of mobile EGF-R assessed with the fluorescence recovery after photobleaching (FRAP). We found that human keratinocytes display a higher basal level of EGF-R mobility than human skin fibroblasts, viz. with diffusion coefficients (D ± standard error of the mean, SEM) of 4.2±0.2 × 10−10 cm2/s, and 1.8±0.2 × 10−10 cm2/s, respectively. UVB-irradiated fibroblasts showed an almost four-fold increase in the diffusion coefficient; D was 6.3±0.3 × 10−10 cm2/s. The keratinocytes, however, displayed no significant increase in receptor diffusion after irradiation; D was 5.1±0.8 × 10−10 cm2/s. In both cell types the percentage of EGF-R fluorescence recovery after photobleaching, i.e. the fraction of mobile receptors, was significantly increased after irradiation. In keratinocytes it increased from 69% before irradiation to 78% after irradiation. Analogous figures for fibroblasts were 61% and 73%. The effect of UVB on fibroblast receptors was abolished by prior addition of superoxide dismutase (SOD) and catalase (CAT). It is concluded that UVB radiation of fibroblasts and keratinocytes can affect their biophysical properties of EGF-R. The finding that addition of antioxidant enzymes prevented the UVB effect in fibroblasts may indicate the involvement of reactive oxygen metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAT:

Catalase

D:

Lateral diffusion coefficient

EDTA:

Ethylenediaminetetraacetic acid

EGF:

Epidermal growth factor

E-MEM:

Eagle's minimum essential medium

FCS:

Fetal calf serum

FRAP:

Fluorescence recovery after photobleaching

KRG:

Krebs-Ringer phosphate buffer

PBS:

Phosphate-buffered saline

R:

Mobile fraction

ROS:

Reactive oxygen species

SEM:

Standard error of the mean

SOD:

Superoxide dismutase

UVA:

Ultraviolet light-A (315-400 nm)

UVB:

Ultraviolet light-B (280-315 nm)

References

  • Axelrod, D., Koppel, D. E., Schlessinger, J., Elson, E. L. and Webb, W. W. (1976)Biophys. J. 16:1055–1069.

    Google Scholar 

  • Brawn, K. and Fridovich, I. (1981)Arch. Biochem. Biophys. 206:414–419.

    Google Scholar 

  • Cross, C. C., Halliwell, B., Borish, E. T., Pryor, W. A., Ames, B. N., Saul, R. L., McCord, J. M. and Harman, D. (1987)Ann. Intern. Med. 107:526–545.

    Google Scholar 

  • Crutzen, P. J. (1992)Nature 356:104–105.

    Google Scholar 

  • Darr, D. and Fridovich, I. (1994)J. Invest Dermatol 102:671–675.

    Google Scholar 

  • De Leo, V. A., Horlick, H., Hanson, D., Eisenger, M. and Harber, L. C. (1984)J. Invest. Dermatol. 83:323–326.

    Google Scholar 

  • Dobretsov, G. E., Borschevska, T. A., Petrov, V. A. and Vladimirov, Y. A. (1977)FEBS 84:125–128.

    Google Scholar 

  • Fuchs, J., Hufleit, M., Rothfuss, L., Wilson, D., Caramo, G. and Packer, L. (1990) In:Antioxidants in Therapy and Preventive Medicine. Plenum Press, New York, 533–536.

    Google Scholar 

  • Gilchrest, B. A., Soter, N. A., Stoff, J. S. and Hihm, M. C. (1981)J. Am. Acad. Dermatol. 5:411–422.

    Google Scholar 

  • Guttridge, J. M. C. and Halliwell, B. (1990)TIBS 15:129–135.

    Google Scholar 

  • Halliwell, B. and Aruoma, O. I. (1991)FEBS Lett 1–2:9–19.

    Google Scholar 

  • Hudson, L. and Hay, F. C. (1980) In:Practical Immunology. Second ed. Blackwell Scientific Publications, Oxford, 11–12.

    Google Scholar 

  • Jacobson, K., Derzko, Z., Wu, E. S., Hou, Y. and Poste, G. J. (1977)J. Supramol. Struct. 5:565–576.

    Google Scholar 

  • Johansson, B., Sundqvist, T. and Magnusson, K. -E. (1987)Cell. Biophys. 10:233–244.

    Google Scholar 

  • Johansson, B. and Magnusson, K. -E. (1990)Inflammation 14:631–644.

    Google Scholar 

  • Jurkiewicz, B. A. and Buettner, G. R. (1994)Photochem Photobiology 59:1–4.

    Google Scholar 

  • Koppel, D. E., Sheetz, M. P. and Schindler, M. (1981)Proc. Natl. Acad. Sci. USA 78:3576–3580.

    Google Scholar 

  • Maeda, K., Naganuma, M. and Fukuda, M. (1991)Photochem Photobiology 54:737–740.

    Google Scholar 

  • Matsui, M. S., Laufer, L., Scheide, S. and DeLeo, V. (1989)J. Invest. Dermatol. 92:617–622.

    Google Scholar 

  • Miyachi, Y., Inamura, S. and Niwa, Y. (1987)J. Invest. Dermatol. 89:111–112.

    Google Scholar 

  • Ohta, A., Mohri, T. and Ohyashiki, T. (1989)Biochem. Biophys. 984:151–157.

    Google Scholar 

  • Peak, J. G., Peak, M. J., Sikorski, R. S. and Jones, C. A. (1985)Photochem. Photobiol. 41:295–302.

    Google Scholar 

  • Pence, B. C. and Naylor, M. F. (1990)J. Invest. Dermatol. 95:213–216.

    Google Scholar 

  • Peters, R. (1981)Cell. Biol. Int. Rep. 5:733–760.

    Google Scholar 

  • Ponec, M., Kempenaar, J., Weerheim, A. and Boonstra, J. (1987)J. Cell. Physiol. 133:358–364.

    Google Scholar 

  • Punnonen, K., Puntala, A., Jansen, C. T. and Ahotupa, M. A. (1991)Acta Derm. Venerol. (Stockh) 71:239–273.

    Google Scholar 

  • Punnonen, K., Puustinen, T. and Jansen, C. T. Arch. (1986)Dermatol. Res. 278:441–444.

    Google Scholar 

  • Punnonen, K., Puustinen, T. C. and Jansen, T. (1987)J. Invest. Dermatol. 88:611–614.

    Google Scholar 

  • Rheinwald, J. C. and Green, H. (1975)Cell 6:331–344.

    Google Scholar 

  • Schlessinger, J., Axelrod, D., Koppel, D. E., Webb, W. W. and Elson, E. L. (1977)Science 195:307–309.

    Google Scholar 

  • Schlessinger, J., Schechter, Y., Cuatrecasas, P., Willingham, M. C. and Pastan, D. (1978)Proc. Natl. Acad. Sci. USA 75:2659–2663.

    Google Scholar 

  • Shindo, Y., Witt, E. and Packer, L. (1993)J. Invest. Dermatol. 100:260–265.

    Google Scholar 

  • Stubbs, C. D. and Smith, A. D. (1984)Biochem. Biophys. Acta 779:89–137.

    Google Scholar 

  • Zidovetzki, R., Yarden, Y., Schlessinger, J. and Jovin, T. M. (1981)Proc. Natl. Acad. Sci. USA 78:6981–6985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lirvall, M., Ljungqvist-Höddelius, P., Wasteson, Å. et al. UVB radiation affects the mobility of epidermal growth factor receptors in human keratinocytes and fibroblasts. Biosci Rep 16, 227–238 (1996). https://doi.org/10.1007/BF01207337

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01207337

Key words

Navigation