Skip to main content
Log in

Local stability of trusses in the context of topology optimization Part I: Exact modelling

  • Research Papers
  • Published:
Structural optimization Aims and scope Submit manuscript

Abstract

The paper considers the problem of optimal truss topology design with respect to stress and local stability (i.e. buckling) constraints. In a context of topology optimization, the exact. management of buckling constraints is highly complex: member forces must satisfy functions which discontinuously depend on the design variables.

New terminologies and an exact problem formulation are provided. It turns out that the classical constraints (equilibrium, stress) together with topological local buckling constraints do not necessarily guarantee the existence of a solution structure. We discuss a simple but typical example demonstrating this effect inherently contained in the problem. It is proved that the inclusion of slenderness constraints guarantees a solution. These additional constraints are motivated by practice and preserve the topology nature of the problem. Finally, an alternative formulation is developed serving as a basis for computational approaches. The numerical treatment is the topic of Part II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archtziger, W. 1994: An SLP-approach for computing optimum truss topology designs covering full local buckling.Mat-Report 1994–55, Dept. of Math., Techn. Univ. of Denmark (DTU)

  • Achtziger, W. 1999: Local stability of trusses in the context of topology optimization, Part II: A numerical approach.Struct. Optim. (to appear)

  • Barta, J. 1957: On the minimum weight of certain redundant structures.Acta Techn. Aca. Sci. Hung. 18, 67–76

    Google Scholar 

  • Bendsøe, M.P. 1995:Methods for optimization of structural topology, shape and material. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Birker, T. 1995:Methods for optimization of structural topology, shape and material. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Birker, T. 1996:New developments in structural optimization using optimility criteria. Series 18, No. 199, Düsseldorf: VDI

    Google Scholar 

  • Cheng, G.D.; Guo, X. 1997: ε-relaxed approach in structural topology optimization.Struct. Optim. 13, 258–266

    Google Scholar 

  • da Silva Smith, O. 1996: Topology optimization of trusses with element linking in buckling. In: da Silva Smith, O.Optimal truss topology design: generation of ground structures and local stability constraints, pp. 65–101. Ph.D. Thesis, Dept. of Math., Techn. Univ. of Denmark (DTU), Lyngby, Denmark

    Google Scholar 

  • da Silva Smith, O. 1997: Topology optimization of trusses with local stability constraints and multiple loading conditions-a heuristic approach.Struct. Optim. 13, 155–166

    Google Scholar 

  • Dorn, W.; Gomory, R.; Greenberg, M. 1964: Automatic design of optimal structures.J. de Mécanique 3, 25–52

    Google Scholar 

  • Gerdes, D. 1995:Strukturoptimierung unter Anwendung der Optimalitätskriterien auf diskretisierte Tragwerke bei besonderer Berücksichtigung der Stabilität (in German). Series 18, No. 171, Düsseldorf: VDI

    Google Scholar 

  • Haftka, R.T.; Gürdal, Z. 1992:Elements of structural optimization. Dordrecht: Kluwer

    Google Scholar 

  • Haug, E.J.; Arora, J.S. 1979:Applied optimal design. New York: J. Wiley & Sons

    Google Scholar 

  • Hörnlein, H.R.E.M. 1979:Ein Algorithmus zur Strukturoptimierung von Fachwerkskonstruktionen Diploma Thesis (in German), Ludwigs-Maximilian-Universität, Munich, Germany

    Google Scholar 

  • Kirsch, U. 1989a: Optimal topologies of structures.Appl. Mech. Rev. 42, 223–239

    Google Scholar 

  • Kirsch, U. 1989b: Optimal topologies of truss structures.Comp. Meth. Appl. Mech. Eng. 72, 15–28

    Google Scholar 

  • Oberndorfer, J.; Achtziger, W.; Hörnlein, H.R.E.M. 1996: Two approaches for truss topology optimization: A comparison for practical use.Struct. Optim. 11, 137–144

    Google Scholar 

  • Pedersen, P. 1970: On the minimum mass layout of trusses. Symp. on Structural Optimization, Istanbul 1969, Conf. Proc. No. 36, Advisory Group for Aerospace Research and Development,AGARD-CP-36-70

  • Pedersen, P. 1993: Topology optimization of three dimensional trusses. In: Bendsøe, M.P.; Mota Soares, C.A. (eds.)Topology optimization of structures, pp. 19–30. Dordrecht: Kluwer

    Google Scholar 

  • Rozvany, G.I.N. 1996: Difficulties in truss topology optimization with stress, local buckling and system stability constraints,Struct. Optim. 11, 213–217

    Google Scholar 

  • Rozvany, G.I.N. 1998: Topology optimization of multi-purpose structures.Math. Meth. Oper. Res. 47, 265–288

    Google Scholar 

  • Rozvany T.I.N.; Bendsøe, M.P.; Kirsch, U. 1995: Layout optimization of structures.Appl. Mech. Rev. 48, 41–119

    Google Scholar 

  • Topping, B.H.V. 1993: Topology design of discrete structures. In: Bendsøe, M.P.; Mota Soares, C.A. (eds.)Topology optimization of structures, pp. 517–534. Dordrecht: Kluwer

    Google Scholar 

  • Zhou, M. 1996: Difficulties in truss topology optimization with stress and local buckling constraints.Struct. Optim. 11, 134–136

    Google Scholar 

  • Zhou, M.; Rozvany, G.I.N. 1992/1993: DCOC: An optimality criteria method for large systems. Part I: Theory. Part II: Algorithm.Struct. Optim. 5, 12–25;6, 250–262

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Achtziger, W. Local stability of trusses in the context of topology optimization Part I: Exact modelling. Structural Optimization 17, 235–246 (1999). https://doi.org/10.1007/BF01206999

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01206999

Keywords

Navigation