Skip to main content
Log in

A parallel Navier-Stokes solver: The Meiko implementation

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

A mixed spectral element, pseudospectral, and finite-difference scheme for solving the Navier-Stokes equations is implemented on a Meiko parallel supercomputer. The code for the solution of Navier-Stokes equations for jetlike flows is implemented with a spectral scheme in cross-flow directions, a spectral element scheme in the stream-wise direction, and finite-difference marching in time. Several strategies for distributing the workload onto the processors are discussed. Special attention is paid to using the flexible topology of the Meiko.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, M.B., and Basco, D.R. 1989.Computational Fluid Dynamics. J. Wiley & Sons, New York, pp. 344–357.

    Google Scholar 

  • Batcho, P.F., Karniadakis, G.E., and Orszag, S.A. 1991. Numerical investigation of the spreading of self-excited stratified jets.J. Fluids and Structures, 5: 681–700.

    Google Scholar 

  • Canuto, C., Hussaini, M.Y., Quarteroni, A., and Zang, T.A. 1988.Spectral methods in Fluid Dynamics. Springer-Verlag, New York, pp. 222–225, 461–463.

    Google Scholar 

  • Fischer, P.F., and Patera, A.T. 1991. Parallel spectral element solution of the Stokes problem.J. Comput. Phys. 92: 380–392.

    Google Scholar 

  • Fischer, P.F., Ho, L.W., Karniadakis, G.E., Ronquist, E.M., and Patera, A.T. 1988. Recent advances in parallel spectral element simulation of unsteady incompressible flows.Computers & Structures, 30: 217–231.

    Google Scholar 

  • Israeli, M. 1989. Personal commun. Dept. of Comp. Sci., Technion-Israel, Institute of Technology, Haifa, Israel.

    Google Scholar 

  • Karniadakis, G.E., Israeli, M., and Orszag, S.A. 1991. High-order splitting methods for the incompressible Navier-Stokes equations.J. Comput. Phys., 97: 414–443.

    Google Scholar 

  • Korczak, K.Z., and Patera, A.T. 1986. An isoparametric spectral element method for solution of the Navier-Stokes equations in complex geometry.J. Comput. Phys., 62: 361–382.

    Google Scholar 

  • Landau, L.D., and Lifshitz, E.M. 1986.Fluid Mechanics, 3rd Russian ed., Nauka, Moscow, pp. 147–151.

    Google Scholar 

  • Patera, A.T. 1984. A spectral element method for fluid dynamics.J. Comput. Phys., 54: 468–487.

    Google Scholar 

  • Pelz, R.B. 1991. The parallel Fourier pseudospectral method.J. Comput. Phys., 92: 296–312.

    Google Scholar 

  • Spalart, R. 1986. Numerical simulation of boundary layers. NASA Tech. Memorandum 88222.

  • Wang, H.H. 1981. A parallel method for tridiagonal equations.ACM Trans. Math. Software, 7, 2: 170–183.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prestin, M., Shtilman, L. A parallel Navier-Stokes solver: The Meiko implementation. J Supercomput 9, 347–364 (1995). https://doi.org/10.1007/BF01206272

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01206272

Keywords

Navigation