Skip to main content
Log in

Solutions of Hartree-Fock equations for Coulomb systems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This paper deals with the existence of multiple solutions of Hartree-Fock equations for Coulomb systems and related equations such as the Thomas-Fermi-Dirac-Von Weizäcker equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon, S.: Lower bounds for solutions of Schrödinger equations. J. Anal Math. 1–25 (1970)

  2. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critica point theory and applications. J. Funct. Anal.14, 349–381 (1973)

    Google Scholar 

  3. Bader, P.: Variational method for the Hartree equation of the Helium atom. Proc. R. Soc. Edin.82A, 27–39 (1978)

    Google Scholar 

  4. Bahri, A.: Une méthode perturbative en théorie de Morse. Thèse d'Etat, Univ. P. et M. Curie, Paris 1981

    Google Scholar 

  5. Bahri, A., Lions, P.L.: Remarques sur la théorie variationnelle des points critiques et applications. C.R. Acad. Sci. Paris301, 145–147 (1985)

    Google Scholar 

  6. Bazley, N., Reeken, M., Zwahlen, B.: Global properties of the minimal branch of a class of nonlinear variational problems. Math. Z.123, 301–309 (1971)

    Google Scholar 

  7. Bazley, N., Seydel, R.: Existence and bounds for critical energies of the Hartree operator. Chem. Phys. Lett.24, 128–132 (1974)

    Google Scholar 

  8. Bazley, N., Zwahlen, B.: Estimation of the bifurcation coefficient for nonlinear eigenvalue problems. J. Appl Math. Phys.20, 281–288 (1969)

    Google Scholar 

  9. Bazley, N., Zwahlen, B.: A branch of positive solutions of nonlinear eigenvalue problems. Manuscr. Math.2, 365–374 (1970)

    Google Scholar 

  10. Benguria, R., Brézis, H., Lieb, E.H.: The Thomas-Fermi-von Weizäcker theory of atoms and molecules. Commun. Math. Phys.79, 167–180 (1981)

    Google Scholar 

  11. Berestycki, H., Lions, P.L.: Nonlinear scalar field equations. Arch. Rat. Mech. Anal.82, 313–345 and 347–375 (1983)

    Google Scholar 

  12. Berestycki, H., Taubes, C.: In preparation

  13. Bethe, H., Jackiw, R.: Intermediate quantum mechanics. New York: Benjamin 1969

    Google Scholar 

  14. Bongers. A.: Behandlung verallgemeinerter indlineover Eigenwertprobleme und Ljusternik-Schnirelman Theorie. Univ. Mainz 1979

  15. Bourgain, J.: La propriété de Radon-Nikodym. Cours de 3e cycle polypié no 36, Univ. P. et M. Curie, Paris 1979

    Google Scholar 

  16. Brézis, H., Coron, J. M.: Convergence of solutions of H systems or how to blow bubbles. Arch. Rat. Mech. Anal. (to appear)

  17. Brézis, H., Lieb, E.H.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. (1983)

  18. Brézis, H., Oswald, L.: Remarks on sublinear elliptic equations. Nonlinear Anal., Theory Methods Appl.10, 55–64 (1986)

    Google Scholar 

  19. Cazenave, T., Lions, P.L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys.85, 549–561 (1982)

    Google Scholar 

  20. Clarke, D.C.: A variant of the Ljusternik-Schnirelman theory. Indiana Univ. Math. J.22, 65–74 (1972)

    Google Scholar 

  21. Coffman, C.V.: Ljusternik-Schnirelman theory: Complementary principles and the Morse index. Preprint

  22. Ekeland, I.: Nonconvex minimization problems. Bull. Am. Math. Soc.1, 443–474 (1979)

    Google Scholar 

  23. Ekeland, I., Lebourg, G.: Generic Frechet-differentiability and perturbed optimization problems in Banach spaces. Trans. Am. Math. Soc.224, 193–216 (1976)

    Google Scholar 

  24. Fock, V.: Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Z. Phys.61, 126–148 (1930)

    Google Scholar 

  25. Gogny, D., Lions, P.L.: Hartree-Fock theory in Nuclear Physics. RAIRO M2AN, 1986

  26. Gustafson, K., Sather, D.: A branching analysis of the Hartree equation. Rend. Mat. Appl.4, 723–734 (1971)

    Google Scholar 

  27. Hartree, D.: The wave mechanics of anatom with a non-coulomb central field. Part I. Theory and methods. Proc. Camb. Phil. Soc.24, 89–312 (1928)

    Google Scholar 

  28. Hartree, D.: The calculation of atomic structures. New York: Wiley 1957

    Google Scholar 

  29. Krasnosel'skii, M.A.: Topological methods in the theory of nonlinear integral equations. New York: Mac Millan 1964

    Google Scholar 

  30. Léon, J.F.: work in preparation

  31. Lieb, E.H.: Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys.53, 603–641 (1981)

    Google Scholar 

  32. Lieb, E.H.: Statistical theories of large atoms and molecules. Comment. At. Mol. Phys.11, 147–155 (1982)

    Google Scholar 

  33. Lieb, E.H.: Thomas-Fermi and Hartree-Fock theory. In Proceedings of the International Congress of Mathematicians, Vancouver, Vol. 2, pp. 383–386

  34. Lieb, E.H.: Bound on the maximum negative ionization of atoms and molecules. Phys. Rev. A.29, 3018–3028 (1984)

    Google Scholar 

  35. Lieb, E.H.: Analysis of TFW equation for an infinite atom without electron repulsion. Commun. Math. Phys.85, 15–25 (1982)

    Google Scholar 

  36. Lieb, E.H., Liberman, D.A.: Numerical calculation of the TFW function for an infinite atom without electron repulsion. Los Alamos report No. LA-9186-MS (1982)

  37. Lieb, E.H., Simon, B.: The Hartree-Fock theory for Coulomb systems. Commun. Math. Phys.53, 185–194 (1977)

    Google Scholar 

  38. Lieb, E.H., Simon, B.: On solutions to the Hartree-Fock problem for atoms and molecules. J. Chem. Phys.61, 735–736 (1974)

    Google Scholar 

  39. Lieb, E.H., Simon, B.: The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math.23, 22–116 (1977)

    Google Scholar 

  40. Lions, P.L.: Sur l'existence d'états excités dans la théorie de Hartree-Fock. C.R. Acad. Sci. Paris294, 377–379 (1982)

    Google Scholar 

  41. Lions, P.L.: Some remarks on Hartree equations. Nonlinear Anal., Theory Methods Appl.5, 1245–1256 (1981)

    Google Scholar 

  42. Lions, P.L.: Compactness and topological methods for some nonlinear variational problems of Mathematical Physics. In: Nonlinear problems, present and future. Bishop, A., Campbell, D., Nicolaenko, B. (eds.) Amsterdam: North-Holland 1982

    Google Scholar 

  43. Lions, P.L.: The concentration-compactness principle in the Calculus of Variations. The locally compact case. Ann. Inst. H. Poincaré1, 109–145 and 223–283 (1984). See also C.R. Acad. Sci. Paris294, 261–264 (1982)

    Google Scholar 

  44. Lions, P.L.: On the concentration-compactness principle. In: Contributions to nonlinear partial differential equations. London: Pitman 1983

    Google Scholar 

  45. Lions, P.L.: The concentration-compactness principle in the Calculus of Variations. The limit case. Riv. Mat. Iberoam.1, 145–201 and 45–121 (1985)

    Google Scholar 

  46. Lions, P.L.: Symmetries and the concentration-compactness method. In: Nonlinear variational problems. London: Pitman 1987

    Google Scholar 

  47. Ljusternik, L.A., Schnirelman, L.G.: Topological methods in the calculus of variations. Paris: Herman 1934

    Google Scholar 

  48. Palais, R.S.: Ljusternik-Schnirelman theory on Banach manifolds. Topology5, 115–132 (1966)

    Google Scholar 

  49. Palais, R.S.: Critical point theory and the minimax principle. Proc. Symp. Pure Math.15, Providence, R.I.: A.M.S. 185–212 (1970)

    Google Scholar 

  50. Rabinowitz, P.H.: Variational methods for nonlinear eigenvalue problems, In Eigenvalues of nonlinear problems, C.I.M.E., Rome, Ediz. Cremonese (1974)

    Google Scholar 

  51. Reeken, M.: General theorem on bifurcation and its application to the Hartree equation of the Helium atom. J. Math. Phys.11, 2505–2512 (1970)

    Google Scholar 

  52. Sacks, J., Uhlenbeck, K.: The existence of minimal 2-spheres. Ann. Math.113, 1–24 (1981)

    Google Scholar 

  53. Schaeffer, H.F. III: The electronic structure of atoms and molecules. Reading, MA: Addison-Wesley 1972

    Google Scholar 

  54. Slater, J.C.: A note on Hartree's method. Phys. Rev.35, 210–211 (1930)

    Google Scholar 

  55. Slater, J.C.: Quantum theory of atomic structure, Vol. I. New York: McGraw-Hill 1960

    Google Scholar 

  56. Stegall, C.: Optimization of functions on certain subsets of Banach spaces. Math. Anal.236, 171–176 (1978)

    Google Scholar 

  57. Struwe, M.: A global compactness result for elliptic boundary value problems involving limiting nonlinearities. Math. Z. (1985)

  58. Stuart, C.: Existence theory for the Hartree equation. Arch. Rat. Mech. Anal.51, 60–69 (1973)

    Google Scholar 

  59. Stuart, C.: An example in nonlinear functional analysis: the Hartree equation. J. Math. Anal. Appl.49, 725–733 (1975)

    Google Scholar 

  60. Taubes, C.: The existence of a non-minimal solution to the SU (2) Yang-Mills-Higgs equations on ℝ3. I. Commun. Math. Phys.86, p. 257–298 (1982)

    Google Scholar 

  61. Taubes, C.: The existence of a non-minimal solution to the SU (2) Yang-Mills-Higgs equations on ℝ3. II. Commun. Math. Phys.86, 299–320 (1982)

    Google Scholar 

  62. Uhlenbeck, K.: Removable singularities in Yang-Mills fields. Commun. Math. Phys.83, 11–29 (1982)

    Google Scholar 

  63. Uhlenbeck, K.: Connections withL p bounds on curvature. Commun. Math. Phys.83, 31–42 (1982)

    Google Scholar 

  64. Viterbo, C.: Indice de Morse des points critiques obtenus par minimax (In preparation)

  65. Wolkowisky, J.H.: Existence of solutions of the Hartree equations forN electrons. An application of the Schauder-Tychonoff theorem. Indiana Univ. Math. J.22, 551–568 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B. Simon

Partially supported by CEA-DAM

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lions, P.L. Solutions of Hartree-Fock equations for Coulomb systems. Commun.Math. Phys. 109, 33–97 (1987). https://doi.org/10.1007/BF01205672

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01205672

Keywords

Navigation