Abstract
This paper deals with the existence of multiple solutions of Hartree-Fock equations for Coulomb systems and related equations such as the Thomas-Fermi-Dirac-Von Weizäcker equation.
Similar content being viewed by others
References
Agmon, S.: Lower bounds for solutions of Schrödinger equations. J. Anal Math. 1–25 (1970)
Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critica point theory and applications. J. Funct. Anal.14, 349–381 (1973)
Bader, P.: Variational method for the Hartree equation of the Helium atom. Proc. R. Soc. Edin.82A, 27–39 (1978)
Bahri, A.: Une méthode perturbative en théorie de Morse. Thèse d'Etat, Univ. P. et M. Curie, Paris 1981
Bahri, A., Lions, P.L.: Remarques sur la théorie variationnelle des points critiques et applications. C.R. Acad. Sci. Paris301, 145–147 (1985)
Bazley, N., Reeken, M., Zwahlen, B.: Global properties of the minimal branch of a class of nonlinear variational problems. Math. Z.123, 301–309 (1971)
Bazley, N., Seydel, R.: Existence and bounds for critical energies of the Hartree operator. Chem. Phys. Lett.24, 128–132 (1974)
Bazley, N., Zwahlen, B.: Estimation of the bifurcation coefficient for nonlinear eigenvalue problems. J. Appl Math. Phys.20, 281–288 (1969)
Bazley, N., Zwahlen, B.: A branch of positive solutions of nonlinear eigenvalue problems. Manuscr. Math.2, 365–374 (1970)
Benguria, R., Brézis, H., Lieb, E.H.: The Thomas-Fermi-von Weizäcker theory of atoms and molecules. Commun. Math. Phys.79, 167–180 (1981)
Berestycki, H., Lions, P.L.: Nonlinear scalar field equations. Arch. Rat. Mech. Anal.82, 313–345 and 347–375 (1983)
Berestycki, H., Taubes, C.: In preparation
Bethe, H., Jackiw, R.: Intermediate quantum mechanics. New York: Benjamin 1969
Bongers. A.: Behandlung verallgemeinerter indlineover Eigenwertprobleme und Ljusternik-Schnirelman Theorie. Univ. Mainz 1979
Bourgain, J.: La propriété de Radon-Nikodym. Cours de 3e cycle polypié no 36, Univ. P. et M. Curie, Paris 1979
Brézis, H., Coron, J. M.: Convergence of solutions of H systems or how to blow bubbles. Arch. Rat. Mech. Anal. (to appear)
Brézis, H., Lieb, E.H.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. (1983)
Brézis, H., Oswald, L.: Remarks on sublinear elliptic equations. Nonlinear Anal., Theory Methods Appl.10, 55–64 (1986)
Cazenave, T., Lions, P.L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys.85, 549–561 (1982)
Clarke, D.C.: A variant of the Ljusternik-Schnirelman theory. Indiana Univ. Math. J.22, 65–74 (1972)
Coffman, C.V.: Ljusternik-Schnirelman theory: Complementary principles and the Morse index. Preprint
Ekeland, I.: Nonconvex minimization problems. Bull. Am. Math. Soc.1, 443–474 (1979)
Ekeland, I., Lebourg, G.: Generic Frechet-differentiability and perturbed optimization problems in Banach spaces. Trans. Am. Math. Soc.224, 193–216 (1976)
Fock, V.: Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Z. Phys.61, 126–148 (1930)
Gogny, D., Lions, P.L.: Hartree-Fock theory in Nuclear Physics. RAIRO M2AN, 1986
Gustafson, K., Sather, D.: A branching analysis of the Hartree equation. Rend. Mat. Appl.4, 723–734 (1971)
Hartree, D.: The wave mechanics of anatom with a non-coulomb central field. Part I. Theory and methods. Proc. Camb. Phil. Soc.24, 89–312 (1928)
Hartree, D.: The calculation of atomic structures. New York: Wiley 1957
Krasnosel'skii, M.A.: Topological methods in the theory of nonlinear integral equations. New York: Mac Millan 1964
Léon, J.F.: work in preparation
Lieb, E.H.: Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys.53, 603–641 (1981)
Lieb, E.H.: Statistical theories of large atoms and molecules. Comment. At. Mol. Phys.11, 147–155 (1982)
Lieb, E.H.: Thomas-Fermi and Hartree-Fock theory. In Proceedings of the International Congress of Mathematicians, Vancouver, Vol. 2, pp. 383–386
Lieb, E.H.: Bound on the maximum negative ionization of atoms and molecules. Phys. Rev. A.29, 3018–3028 (1984)
Lieb, E.H.: Analysis of TFW equation for an infinite atom without electron repulsion. Commun. Math. Phys.85, 15–25 (1982)
Lieb, E.H., Liberman, D.A.: Numerical calculation of the TFW function for an infinite atom without electron repulsion. Los Alamos report No. LA-9186-MS (1982)
Lieb, E.H., Simon, B.: The Hartree-Fock theory for Coulomb systems. Commun. Math. Phys.53, 185–194 (1977)
Lieb, E.H., Simon, B.: On solutions to the Hartree-Fock problem for atoms and molecules. J. Chem. Phys.61, 735–736 (1974)
Lieb, E.H., Simon, B.: The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math.23, 22–116 (1977)
Lions, P.L.: Sur l'existence d'états excités dans la théorie de Hartree-Fock. C.R. Acad. Sci. Paris294, 377–379 (1982)
Lions, P.L.: Some remarks on Hartree equations. Nonlinear Anal., Theory Methods Appl.5, 1245–1256 (1981)
Lions, P.L.: Compactness and topological methods for some nonlinear variational problems of Mathematical Physics. In: Nonlinear problems, present and future. Bishop, A., Campbell, D., Nicolaenko, B. (eds.) Amsterdam: North-Holland 1982
Lions, P.L.: The concentration-compactness principle in the Calculus of Variations. The locally compact case. Ann. Inst. H. Poincaré1, 109–145 and 223–283 (1984). See also C.R. Acad. Sci. Paris294, 261–264 (1982)
Lions, P.L.: On the concentration-compactness principle. In: Contributions to nonlinear partial differential equations. London: Pitman 1983
Lions, P.L.: The concentration-compactness principle in the Calculus of Variations. The limit case. Riv. Mat. Iberoam.1, 145–201 and 45–121 (1985)
Lions, P.L.: Symmetries and the concentration-compactness method. In: Nonlinear variational problems. London: Pitman 1987
Ljusternik, L.A., Schnirelman, L.G.: Topological methods in the calculus of variations. Paris: Herman 1934
Palais, R.S.: Ljusternik-Schnirelman theory on Banach manifolds. Topology5, 115–132 (1966)
Palais, R.S.: Critical point theory and the minimax principle. Proc. Symp. Pure Math.15, Providence, R.I.: A.M.S. 185–212 (1970)
Rabinowitz, P.H.: Variational methods for nonlinear eigenvalue problems, In Eigenvalues of nonlinear problems, C.I.M.E., Rome, Ediz. Cremonese (1974)
Reeken, M.: General theorem on bifurcation and its application to the Hartree equation of the Helium atom. J. Math. Phys.11, 2505–2512 (1970)
Sacks, J., Uhlenbeck, K.: The existence of minimal 2-spheres. Ann. Math.113, 1–24 (1981)
Schaeffer, H.F. III: The electronic structure of atoms and molecules. Reading, MA: Addison-Wesley 1972
Slater, J.C.: A note on Hartree's method. Phys. Rev.35, 210–211 (1930)
Slater, J.C.: Quantum theory of atomic structure, Vol. I. New York: McGraw-Hill 1960
Stegall, C.: Optimization of functions on certain subsets of Banach spaces. Math. Anal.236, 171–176 (1978)
Struwe, M.: A global compactness result for elliptic boundary value problems involving limiting nonlinearities. Math. Z. (1985)
Stuart, C.: Existence theory for the Hartree equation. Arch. Rat. Mech. Anal.51, 60–69 (1973)
Stuart, C.: An example in nonlinear functional analysis: the Hartree equation. J. Math. Anal. Appl.49, 725–733 (1975)
Taubes, C.: The existence of a non-minimal solution to the SU (2) Yang-Mills-Higgs equations on ℝ3. I. Commun. Math. Phys.86, p. 257–298 (1982)
Taubes, C.: The existence of a non-minimal solution to the SU (2) Yang-Mills-Higgs equations on ℝ3. II. Commun. Math. Phys.86, 299–320 (1982)
Uhlenbeck, K.: Removable singularities in Yang-Mills fields. Commun. Math. Phys.83, 11–29 (1982)
Uhlenbeck, K.: Connections withL p bounds on curvature. Commun. Math. Phys.83, 31–42 (1982)
Viterbo, C.: Indice de Morse des points critiques obtenus par minimax (In preparation)
Wolkowisky, J.H.: Existence of solutions of the Hartree equations forN electrons. An application of the Schauder-Tychonoff theorem. Indiana Univ. Math. J.22, 551–568 (1972)
Author information
Authors and Affiliations
Additional information
Communicated by B. Simon
Partially supported by CEA-DAM
Rights and permissions
About this article
Cite this article
Lions, P.L. Solutions of Hartree-Fock equations for Coulomb systems. Commun.Math. Phys. 109, 33–97 (1987). https://doi.org/10.1007/BF01205672
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01205672