Communications in Mathematical Physics

, Volume 86, Issue 1, pp 111–141 | Cite as

Normal product states for fermions and twisted duality for CCR- and CAR-type algebras with application to the Yukawa2 quantum field model

  • Stephen J. Summers


We present sufficient conditions that imply duality for the algebras of local observables in all Abelian sectors of all locally normal, irreducible representations of a field algebra if twisted duality obtains in one of these representations. It is verified that the Yukawa2 model satisfies these conditions, yielding the first proof of duality for the observable algebra in all coherent charge sectors in this model. This paper also constitutes the first verification of the assumptions of the axiomatic study of the structure of superselection sectors by Doplicher, Haag and Roberts in an interacting model with nontrivial sectors. The existence of normal product states for the free Fermi field algebra and, thus, the verification of the “funnel property” for the associated net of local algebras are demonstrated.


Irreducible Representation Quantum Computing Field Model Free Fermi Local Observable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Araki, H.: von Neumann algebras of local observables for free scalar field. J. Math. Phys.5, 1–13 (1964)Google Scholar
  2. 2.
    Araki, H.: Types of von Neumann algebras associated with free fields. Prog. Theor. Phys.32, 956–965 (1964)Google Scholar
  3. 3.
    Araki, H.: On the algebra of all local observables. Prog. Theor. Phys.32, 844–854 (1964)Google Scholar
  4. 4.
    Balaban, T., Gawedzki, K.: A Low temperature expansion for the pseudoscalar Yukawa model of quantum fields in two space-time dimensions. Ann. Inst. H. Poincaré.Google Scholar
  5. 5.
    Béllissard, J., Fröhlich, J., Gidas, B.: Soliton mass and surface tension in the (λ|φ|4)2 quantum field model. Commun. Math. Phys.60, 37–72 (1978)Google Scholar
  6. 6.
    Bisognano, J. J., Wichmann, E. H.: On the duality condition for a hermitian scalar field. J. Math. Phys.16, 985–1007 (1975)Google Scholar
  7. 7.
    Bisognano, J. J., Wichmann, E. H.: On the duality condition for quantum fields. J. Math. Phys.17, 303–321 (1976)Google Scholar
  8. 8.
    Buchholz, D.: Product states for local algebras. Commun. Math. Phys.36, 287–304 (1974)Google Scholar
  9. 9.
    Cochran, J. A.: The analysis of linear integral equations. New York: McGraw-Hill 1972Google Scholar
  10. 10.
    Cooper, A., Rosen, L.: The weakly coupled Yukawa2 field theory: Cluster expansion and Wightman axioms. Trans. Am. Math. Soc.234, 1–88 (1977)Google Scholar
  11. 11.
    Dell'Antonio, G. F.: Structure of the algebras of some free systems. Commun. Math. Phys.9, 81–117 (1968)Google Scholar
  12. 12.
    Doplicher, S., Haag, R., Roberts J.: Fields, observables and gauge transformations, I. Commun. Math. Phys.13, 1–23 (1969)Google Scholar
  13. 13.
    Doplicher, S., Haag, R., Roberts, J.: Fields, observables and gauge transformations, II. Commun. Math. Phys.15, 173–200 (1969)Google Scholar
  14. 14.
    Driessler, W.: Duality and absence of locally generated superselection sectors for CCR-type algebras. Commun. Math. Phys.70, 213–220 (1979)Google Scholar
  15. 15.
    Eckmann, J.-P., Osterwalder, K.: An Application of Tomita's theory of modular Hilbert algebras: duality for free Bose fields. J. Funct. Anal.13, 1–12 (1973)Google Scholar
  16. 16.
    Foit, G. J.: Ph. D. Thesis, Universität Osnabrück, 1982Google Scholar
  17. 17.
    Glimm, J., Jaffe, A.: Quantum field theory models. Les Houches Lectures 1970. De Witt, C., Stora, R. (eds.) New York: Gordon and Breach 1970Google Scholar
  18. 18.
    Glimm, J., Jaffe, A.: Boson quantum field models. In: Mathematics in Contemporary Physics, Streater, R. F. (ed.) London, New York: Academic Press 1972Google Scholar
  19. 19.
    Glimm, J., Jaffe, A.: Self-Adjointness of the Yukawa2 Hamiltonian. Ann. Phys. 60, 321–383 (1970)Google Scholar
  20. 20.
    Glimm, J., Jaffe, A.: The λ(φ4)2 quantum field theory without cutoffs, III, The physical vacuum. Acta Math.125, 203–267 (1970)Google Scholar
  21. 21.
    Glimm, J., Jaffe, A.: The Yukawa2 quantum field theory without cutoffs. J. Funct. Anal.7, 323–357 (1971)Google Scholar
  22. 22.
    Glimm, J., Jaffe, A., Spencer, T.: The particle structure of the weakly coupledP(φ)2 model and other applications of high temperature expansions. In: Constructive Quantum Field Theory. Velo, G., Wightman, A. (eds.) Lecture Notes in Physics, Vol. 25, New York, Heidelberg: Springer 1973Google Scholar
  23. 23.
    Glimm, J., Jaffe, A., Spencer, T.: Convergent expansion about mean field theory, I and II. Ann. Phys.101, 610–630 and 631–669 (1976)Google Scholar
  24. 24.
    Haag, R., Kastler, D.: An Algebraic approach to quantum field theory. J. Math. Phys.5, 848–861 (1964)Google Scholar
  25. 25.
    Leyland, P., Roberts, J., Testard, D.: Quality for quantum free fields. Marseille CNRS preprint, CPT 78/p. 1016Google Scholar
  26. 26.
    Magnen, J., Sénéor, R.: The Wightman axioms for the weakly coupled Yukawa model in two dimensions. Commun. Math. Phys.51, 297–313 (1976)Google Scholar
  27. 27.
    McBryan, O. A., Park, Y. M.: Lorentz covariance of the Yukawa2 quantum field theory. J. Math. Phys.16, 104–110 (1975)Google Scholar
  28. 28.
    Osterwalder, K.: Euclidean Green's functions and Wightman distributions. In: Constructive Quantum Field Theory, Velo, G., Wightman, A. (eds.) Lecture Notes in Physics, Vol. 25, Berlin, Heidelberg, New York: Springer 1973Google Scholar
  29. 29.
    Osterwalder, K.: Duality for free Bose fields. Commun. Math. Phys.29, 1–14 (1973)Google Scholar
  30. 30.
    Osterwalder, K., Schrader, R.: Euclidean Fermi fields and a Feynman-Kac formula for bosonfermion models. Helv. Phys. Acta.46, 277–302 (1973)Google Scholar
  31. 31.
    Osterwalder, K., Schrader, R.: Axioms for Euclidean Green's functions, I and II. Commun. Math. Phys.31, 83–112 (1973) and42, 281–305 (1975)Google Scholar
  32. 32.
    Powers, R. F., Størmer, E.: Free states of the canonical anticommutation relations. Commun. Math. Phys.16, 1–33 (1970)Google Scholar
  33. 33.
    Roberts, J. E.: The Structure of sectors reached by a field algebra. In: Cargése Lectures in Physics, Vol. 4, Kastler, D. (ed.) New York: Gordon and Breach 1970Google Scholar
  34. 34.
    Roberts, J. E.: Spontaneously broken gauge symmetries and super-selection rules. In: Proceedings of the International School of Mathematical Physics, Univ. of Camerino, 1974, Gallavotti, E. (ed.) Univ. of Camerino, 1976Google Scholar
  35. 35.
    Roberts, J. E.: A Survey of local cohomology. In: Proceedings of the Conference on Mathematical Problems in Theoretical Physics, Rome 1977, (eds.) Doplicher, S. Dell'Antonio, G. F., Jona-Lasinio, G. (eds.) Lecture in Physics, Vol. 80, Berlin and New York: Springer 1978Google Scholar
  36. 36.
    Roberts, J. E.: Net Cohomology and its applications to field theory. In: Quantum Fields-Algebra, Processes, Streit, L. (ed.) Vienna, New York: Springer 1980Google Scholar
  37. 37.
    Roos, H.: Independence of local algebras in quantum field theory. Commun. Math. Phys.16, 238–246 (1970)Google Scholar
  38. 38.
    Sakai, S.: C* - and W*-Algebras, Berlin, Heidelberg, New York: Springer 1971Google Scholar
  39. 39.
    Schrader, R.: A Remark on Yukawa plus Boson selfinteraction in two space-time dimensions. Commun. Math. Phys.21, 164–170 (1971)Google Scholar
  40. 40.
    Schrader, R.: Yukawa quantum field theory in two space-time dimensions without cutoffs. Ann. Phys.70, 412–457 (1972)Google Scholar
  41. 41.
    Segal, I. E., Goodman, R. W.: Anti-locality of certain Lorentz-invariant operators. J. Math. Mech.14, 629–638 (1965)Google Scholar
  42. 42.
    Seiler, E.: Schwinger functions for the Yukawa model in two dimensions with space-time cutoff. Commun. Math. Phys.42, 163–182 (1975)Google Scholar
  43. 43.
    Seiler, E., Simon, B.: Nelson's symmetry and all that in the Yukawa2 and (φ4)3 field theories. Ann. Phys.97, 470–518 (1976)Google Scholar
  44. 44.
    Shale, D., Stinespring, W. F.: States on the Clifford algebra. Ann. Math.80, 365–381 (1964)Google Scholar
  45. 45.
    Schlieder, S.: Einige Bemerkungen über Projektionsoperatoren. Commun. Math. Phys.13, 216–225 (1969)Google Scholar
  46. 46.
    Streater, R. F., Wightman, A.: PCT, Spin and Statistics, and All That, New York: Benjamin 1964Google Scholar
  47. 47.
    Kishimoto, A., Takai, H. On the invariant Γ (α) in C*-dynamical systems. Tôhoku Math. J.30, 83–94 (1978)Google Scholar
  48. 48.
    Glimm, J., Jaffe, A.: The λφ24 quantum field theory without cutoffs, IV. J. Math. Phys.13, 1568–1584 (1972)Google Scholar
  49. 49.
    McBryan, O. A.: Convergence of the vacuum energy density, φ-bounds and existence of Wightman functions for the Yukawa2 model. In: Les Méthodes Mathématiques de la Théorie Quantique des Champs, Proceedings of the 1975 Marseille Conference, Editions du CNRS, 1976Google Scholar
  50. 50.
    Pedersen, G. K.: C*-Algebras and Their Automorphism Groups. London, New York: Academic Press 1979Google Scholar
  51. 51.
    Rideau, G.: On some representations of the anticommutation relations, Commun. Math. Phys.9, 229–241 (1968)Google Scholar
  52. 52.
    Heifets, E. P., Osipov, E. P.: The energy-momentum spectrum in the Yukawa2 quantum field theory. Commun. Math. Phys.57, 31–50 (1977)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Stephen J. Summers
    • 1
  1. 1.Fachbereich 4Universität OsnabrückOsnabrückGermany

Personalised recommendations