Graham-Rothschild parameter words and measurable partitions


Generalizing earlier results of Moran and Strauss (Mathematika 27, 1980, 213–244) and of Carlson and Simpson (Adv. in Math. 53, 1984, 265–290) it was shown in Prömel and Voigts (Trans. Amer. Math. Soc. 291, 1985, 198–201) that Baire sets ofk-parameter words are Ramsey. Motivated by the “duality” between category and measure, we investigate in this paper measurable sets ofk parameter words. We show that measurable sets of ascendingk-parameter words are Ramsey, whereas in general measurable sets ofk-parameter words fail to be Ramsey.

This is a preview of subscription content, access via your institution.


  1. [1]

    T. J. Carlson: Some unifying principles in Ramsey Theory,Discrete Math. 68, 1988, 117–168.

    Google Scholar 

  2. [2]

    T. J. Carlson, andS. G. Simpson: A dual form of Ramsey's theorem,Adv. in Math. 53, 1984, 265–290.

    Google Scholar 

  3. [3]

    R. L. Graham, andB. L. Rothschild: Ramsey's theorem forn-parameter sets,Trans. Amer. Math. Soc. 159, 1971, 257–292.

    Google Scholar 

  4. [4]

    R. L. Graham, B. L. Rothschild, andJ. H. Spencer: Ramsey's Theory, John Wiley, New York, 1980.

    Google Scholar 

  5. [5]

    A. W. Hales, andR. I. Jewett: Regularity and positional games,Trans. Amer. Math. Soc.,106, 1963, 222–229.

    Google Scholar 

  6. [6]

    N. Hindman: Finite sums from sequences within cells of a partion of ℕ,J. Combin. Theory Ser. A.17, 1974, 1–11.

    Google Scholar 

  7. [7]

    K. Kuratowski: Topology Vol I, Academic Press, New York, 1966.

    Google Scholar 

  8. [8]

    K. Milliken: Ramsey's theorem with sums or unions,J. Combin. Theory Ser. A.18, 1975, 276–190.

    Google Scholar 

  9. [9]

    G. Moran, andD. Strauss: Countable partitions of product spaces,Mathematika 27, 1980, 213–224.

    Google Scholar 

  10. [10]

    H. J. Prömel, andB. Voigt: Baire sets ofk-parameter words are Ramsey,Trans. Amer. Math. Soc. 291, 1985, 189–201.

    Google Scholar 

  11. [11]

    H. J. Prömel, andB. Voigt: Graham Rothschild parameter sets, in: The Mathematics of Ramsey Theory (J. Nešetřil and V. Rödl, eds.), Springer-Verlag, Berlin, 1990, 113–149.

    Google Scholar 

  12. [12]

    H. J. Prömel, andB. Voigt: Aspects of Ramsey Theory, in preparation.

  13. [13]

    S. Shelah: Can you take Solovay's inaccessible away?,Israel J. of Math. 48, 1984, 1–47.

    Google Scholar 

  14. [14]

    B. Voigt: Ellentuck type theorems, to appear inThe Journal of Symbolic Logic.

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Prömel, H.J., Voigt, B. Graham-Rothschild parameter words and measurable partitions. Combinatorica 11, 253–259 (1991).

Download citation

AMS subject classification code (1980)

  • Primary 05 A 99
  • Secondary 05 C 55
  • 10 A 50