Abstract
Letg(n,r) be the maximal order of an induced cycle in the Knesser graph Kn([n] r), whose vertices are ther-sets of [n]={1, ...,n} and whose adjacency relation is disjointness. Thusg(n, r) is the largestm for which there is a sequenceA 1,A 2,...,A m υ [n] ofr-sets withA i ∩A j=ϑ if and only if |i-j|=1 orm−1. We prove that there is an absolute constantc>0 for which
improving previous results. Our lower bound also shows that the clique covering number of the complement of ann-cycle is at most 1.459 log2 n for large enoughn. Related problems concerning the order of induced subgraphs of bounded degree of Kneser graphs are discussed.
This is a preview of subscription content, access via your institution.
References
- [1]
P. Alles, S. Poljak: Long induced paths and cycles in Kneser graphs, to appear.
- [2]
N. Alon: An extremal problem for a sets with applications to graph theory,J. Comb. Theory (A) 40 (1985), 82–89.
- [3]
N. Alon: Covering graphs by the minimum number of equivalence relations,Combinatorica 6 (1986), 201–206.
- [4]
I. Bárány: A short proof of Knesser's conjecture,J. Combinatorial Theory (A) 25 (1978), 325–326.
- [5]
B. Bollobás: On comnplete subgraphs of different orders,Math. Pro. Cambridge Soc. 79 (1976), 19–24.
- [6]
B. Bollobás:Extremal Graph Theory, Academic Press, London 1978, xx+ 488pp.
- [7]
D. de Caen, D. A. Greagory, N. J. Pullman: Clique coverings of complements of paths and cycles,Annals of Discrete Mathematics 27 (1985), 257–268.
- [8]
P. Erdős, W. A. Goodman, L. Pósa: The representation of a graph by set intersections,Can. J. Math. 18 (1966), 106–112.
- [9]
P. Frankl: An extremal problem for two families of sets,Europ. J. Comb. 3 (1982), 125–127.
- [10]
P. Frankl, andZ. Füredi: Extremal problems concerning Kneser graphs,J. Combinatorial Theory (B) 40 (1986), 270–284.
- [11]
Z. Füredi: Matchings and covers in hypergraphs,Graphs and Combinatorics 4 (1988), 115–206.
- [12]
D. A. Gregory, N. J. Pullman: On a clique covering problem of Orlin,Discrete Math. 41 (1982), 97–99.
- [13]
G. Kalai: Intersection patterns of convex sets,Israel J. Math. 48 (1984), 161–174.
- [14]
M. Kneser: Aufgabe 360,Jahresbericht Deutschen Math. Ver. 58 (1955), 453.
- [15]
L. Lovász: Kneser's conjecture, chromatic number and homotopy,J. Combinatorial Theory (A) 25 (1978), 319–324.
- [16]
S. Poljak, andZs. Tuza: Maximum bipartite subgraphs of Kneser graphs,Graphs and Combinatorics 3 (1987), 191–199.
- [16]
S. Poljak, andZs. Tuza: Maximum bipartite subgraphs of Knesser graphs,Graphs and Combinatorics 3 (1987), 191–199.
Author information
Affiliations
Additional information
Research supported by FAPESP, Brazil, Proc. MAP 86/0904-8
Rights and permissions
About this article
Cite this article
Kohayakawa, Y. A note on induced cycles in Kneser graphs. Combinatorica 11, 245–251 (1991). https://doi.org/10.1007/BF01205076
Received:
Revised:
Issue Date:
AMS subject classification (1980)
- 05 C 35
- 05 C 65