A combinatorial approach to complexity


We present a problem of construction of certain intersection graphs. If these graphs were explicitly constructed, we would have an explicit construction of Boolean functions of large complexity.

This is a preview of subscription content, access via your institution.


  1. [1]

    L. Lovász: On the Shannon capacity of graphs,IEEE Transactions of Information theory,IT-25 (1979), 1–7.

    MathSciNet  Article  Google Scholar 

  2. [2]

    T. D. Parsons, andT. Pisanski: Vector representations of graphs, to appear inDiscrete Math. 78 (1989), 143–154.

    MathSciNet  Article  Google Scholar 

  3. [3]

    R. Paturi, andJ. Simon: Probabilistic communication complexity,25-th FOCS (1984), 118–126.

  4. [4]

    P. Pudlák, V. Rödl, andP. Savický: Graph complexity,Acta Informatica 25 (1988), 515–535.

    MathSciNet  MATH  Google Scholar 

  5. [5]

    A. A. Razborov: Applications of matrix methods for the theory of lower bounds in computational complexity,Combinatorica 10 (1990), 81–93.

    MathSciNet  Article  Google Scholar 

  6. [6]

    J. Reiterman, V. Rödl, andE. Šiňajová: Geometrical embeddings of graphs,Discrete Math. 74 (1989), 291–319.

    MathSciNet  Article  Google Scholar 

  7. [7]

    J. Reiterman, V. Rödl, andE. Šiňajová: Embeddings of graphs in euclidean spaces,Discrete Comput Geom. 4 (1989), 349–364.

    MathSciNet  Article  Google Scholar 

  8. [8]

    H. E. Warren: Lower bounds for approximations by nonlinear manifolds,Transactions AMS 133 (1968), 167–178.

    MathSciNet  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pudlák, P., Rödl, V. A combinatorial approach to complexity. Combinatorica 12, 221–226 (1992). https://doi.org/10.1007/BF01204724

Download citation

AMS Subject Classification code (1991)

  • 68 R 10