## Abstract

This paper considers the “Frobenius problem”: Given*n* natural numbers*a*_{1},*a*_{2},...*a*_{n} such that their greatest common divisor is 1, find the largest natural number that is not expressible as a nonnegative integer combination of them. This problem can be seen to be NP-hard. For the cases*n*=2,3 polynomial time algorithms, are known to solve it. Here a polynomial time algorithm is given for every fixed*n*. This is done by first proving an exact relation between the Frobenius problem and a geometric concept called the “covering radius”. Then a polynomial time algorithm is developed for finding the covering radius of any polytope in a fixed number of dimensions. The last algorithm relies on a structural theorem proved here that describes for any polytope*K*, the set*K*+ℤ^{h}={*x*∶*x*∈ℝ^{n};*x=y+z*;*y*∈*K*;*z*∈ℤ^{n}} which is the portion of space covered by all lattice translates of*K*. The proof of the structural theorem relies on some recent developments in the Geometry of Numbers. In particular, it uses a theorem of Kannan and Lovász [11], bounding the width of lattice-point-free convex bodies and the techniques of Kannan, Lovász and Scarf [12] to study the shapes of a polyhedron obtained by translating each facet parallel, to itself. The concepts involved are defined from first principles. In a companion paper [10], I extend the structural result and use that to solve a general problem of which the Frobenius problem is a special case.

This is a preview of subscription content, access via your institution.

## References

- [1]
D. E. Bell: A theorem concerning the integer lattice,

*Studies in Applied Mathematics***56**(1976/77) 187–188. - [2]
A. Brauer, andJ. E. Shockley: On a problem of Frobenius,

*Journal für reine und angewandte Mathematik***211**(1962) 399–408. - [3]
W. Cook, A. M. H. Gerards., A. Schrijver, andE. Tardos: Sensitivity theorems in integer linear programming,

*Mathematical Programming***34**(1986) 251–264 - [4]
P. Erdős, andR. Graham: On a linear diophantine problem of Frobenius,

*Acta Arithmetica***21**(1972). - [5]
H. Greenberg:, Solution to a linear diophantine equation for nonnegative integers,

*Journal of Algorithms***9**(1988) 343–353. - [6]
M. Hujter, andB. Vizvári: The exact solution to the Frobenius problem with three variables.,

*Journal of the Ramanujan Math. Soc.***2**(1987) 117–143. - [7]
M. Grötschel, L. Lovász, andA Schrijver:

*Geometric algorithms and combinatorial optimization*, Springer-Verlag, 1988. - [8]
J. Incerpi, andR. Sedgwick: Improved upper bounds on ShellSort,

*Journal of Computer and Systems Sciences***31**(1985), 210–224. - [9]
R. Kannan: Minkowski's Convex body theorem and integer programming,

*Mathematics of Operations Research***12**(1987), 415–440. - [10]
R. Kannan: Test sets for integer programs, Å∀ sentences, in:

*DIMACS Series in Discrete Mathematics and Theoretical Computer Science*, Volume 1,*Polyhedral Combinatorics*, (eds., W. Cook, P. D. Seymour), 1990, American Mathematical Society 39–47 - [11]
R. Kannan, andL. Lovász,: Covering minima and lattice point free convex bodies, in: Lecture Notes in Computer Science 241, ed. (K. V. Nori), Springer-Verlag (1986) 193–213. Final version in

*Annals of Mathematics***128**(1988) 577–602. - [12]
R. Kannan, L. Lovász, andH. E. Scarf,: The shapes of polyhedra, Cowles Foundation Discussion paper No. 883, September (1988), to appear in

*Mathematics of Operations Research*. - [13]
H. Krawczyk, andA. Paz: The diophantine problem of Frobenius: A close bound,

*Discrete Applied Mathematics***23**(1989) 289–291. - [14]
H. W. Lenstra: Integer programming with a fixed number of variables,

*Mathematics of Operations Research***8**(1983) 538–548. - [15]
L. Lovász: Geometry of Numbers and Integer Programming, Proceedings of the 13th International Symposium on

*Mathematical Programming*, (M. Iri and K. Tanabe eds.),*Mathematical Programming*(1989) 177–201. - [16]
O. J. Rödseth: On a linear diophantine problem of Frobenius,

*Journal für reine und angewandte Mathematik***301**(1978), 171–178. - [17]
H. E. Scarf: An observation on the structure of production sets with indivisibilities,

*Proceedings of the National Academy of Sciences USA***74**(1977) 3637–3641. - [18]
H. E. Scarf, andD. Shallcross: The Frobenius problem and maximal lattice free bodies, Manuscript (1989).

- [19]
R. Sedgwick: A new upper bound for ShellSort,

*Journal of Algorithms***7**(1986), 159–173. - [20]
E. S. Selmer: On the linear diophantine problem of Frobenius

*Journal für reine und angewandte Mathematik***293/294**(1977) 1–17. - [21]
E. S. Selmer, andO. Beyer: On the linear diophantine problem of Frobenius in three variables,

*Journal für reine und angewandte Mathematik***301**(1978), 161–170. - [22]
A. Schrijver:

*Theory of Linear and Integer Programming*, Wiley, 1986. - [23]
B. Vizvári: An application of Gomory cuts in number theory,

*Periodica Mathematica Hungarica***18**(1987) 213–228.

## Author information

### Affiliations

## Additional information

Supported by NSF-Grant CCR 8805199

## Rights and permissions

## About this article

### Cite this article

Kannan, R. Lattice translates of a polytope and the Frobenius problem.
*Combinatorica* **12, **161–177 (1992). https://doi.org/10.1007/BF01204720

Received:

Revised:

Published:

Issue Date:

### AMS subject classification code (1991)

- 11 H 31
- 52 C 07
- 52 C 17
- 90 C 10