The asymptotic behaviour of the number of three-connected triangulations of the disk, with a reflective symmetry in a line

Abstract

We consider the enumeration of the three-connected triangulations of the disk, with a reflective symmetry about a line. The asymptotic behavior is unlike that observed for rooted maps or for maps having rotational symmetry.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    E. A. Bender: Asymptotic methods in enumeration,SIAM Rev. 16 (1974), 485–515.

    MathSciNet  Article  Google Scholar 

  2. [2]

    E. A. Bender andE. R. Canfield: The asymptotic number of rooted maps on a surface,J. Combinatorial Theory (A)43 (1986), 244–257.

    MathSciNet  Article  Google Scholar 

  3. [3]

    E. A. Bender andE. R. Canfield: The asymptotic number of tree-rooted maps,J. Combinatorial Theory (A)48 (1988), 156–164.

    MathSciNet  Article  Google Scholar 

  4. [4]

    E. A. Bender andL. B. Richmond: A survey of the asymptotic behavior of maps, (preprint)

  5. [5]

    E. A. Bender andN. C. Wormald: The asymptotic number of rooted two-connected maps on a surface,J. Combinatorial Theory (A) (to appear).

  6. [6]

    W. G. Brown: Enumeration of triangulations of the disk,Proc. London Math. Soc. (3)14 (1964), 746–768.

    MathSciNet  Article  Google Scholar 

  7. [7]

    E. R. Canfield: Remarks on an asymptotic method in combinatorics,J. Combinatorial Theory (A)37 (1984), 348–352.

    MathSciNet  Article  Google Scholar 

  8. [8]

    Z. C. Gao: The number of rooted triangular maps on a surface,J. Combinatorial Theory (B) (to appear).

  9. [9]

    E. Hille: “Analytic Function Theory”, Vol. II, Ginn and Company, 1962.

  10. [10]

    F. W. J. Olver: “Asymptotics and Special Functions” Academic Press, New York, 1974

    MATH  Google Scholar 

  11. [11]

    W. T. Tutte: A census of planar triangulations,Canad. J. Math. 15 (1962), 21–38.

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jackson, D.M., Richmond, L.B. The asymptotic behaviour of the number of three-connected triangulations of the disk, with a reflective symmetry in a line. Combinatorica 12, 149–153 (1992). https://doi.org/10.1007/BF01204718

Download citation

AMS subject classification code (1991)

  • 05 C 30
  • 05 A 15
  • 05 C 10
  • 57 M 99