Skip to main content
Log in

Sludge-grown algae for culturing aquatic organisms: Part I. Algal growth in sludge extracts

  • Research
  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

This project is aimed at studying the feasibility of using sewage sludge to prepare culture media for microalgae (Chlorella-HKBU) and the use of the sludge-grown algae as a feed for some aquatic organisms. Part I of the project included results on preparing sludge extracts and their use on algal culture. By comparing two culturing techniques, “aeration” and “shaking,” it was noted that both lag and log phases were shortened in the aeration system. A subsequent experiment noted that algal growth subject to aeration rates of 1.0 and 1.5 liters/min had similar lag and log phases. In addition, both aeration rates had a significantly higher (P < 0.05) final cell density than that of 0.5 liters/min. A detailed study on the variation of growth conditions on the algal growth was done. The results indicated that pH values of all the cultures declined below 5 at day 12. The removal rates of ammonia N ranged from 62% to 70%. The sludge-grown algae contained a rather substantial amount of heavy metals (µg/g): Zn 289–581, Cu 443–682, Ni 310–963, Mn 96–126, Cr 25–118, and Fe 438–653. This implied that the rather high levels of heavy metals may impose adverse effects on higher trophic organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Literature Cited

  • Abeliovich, A., and Y. Azov. 1976. Toxicity of ammonia to algae in sewage oxidation ponds.Applied and Environmental Microbiology 31:801–806.

    Google Scholar 

  • Allen, S. E. (ed.). 1989.Chemical analysis of ecological materials Blackwell, Oxford.

    Google Scholar 

  • APHA (American Public Health Association, American Water Works Association, and Water Pollution Control Federation). 1985.Standard methods for the examination of water and wastewater 16th ed. American Public Health Association, Washington, DC.

    Google Scholar 

  • Christensen, E. R., and J. Scherfig. 1979. Effect of manganese, copper, and lead onSelenastrum capricornutum andChlorella stigmatophora.Water Research 13:79–92.

    Google Scholar 

  • Darley, W. M. 1982.Algal bioassay: A physiological approach. Basic microbiology, Vol. 19. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • DeFillips, L. F., and C. K. Pallaghy. 1976. The effect of sublethal concentration of mercury and zinc onChlorella. I. Growth characteristics and uptake of metals.Zeitschrift für Pflanzenphysiologie 78:192–207.

    Google Scholar 

  • de la Noue, J., and D. N. Edlin. 1988. Improved performance of intensive semicontinuous cultures ofScenedesmus by biomass recirculation.Biotechnology Bioengineering 31:397–406.

    Google Scholar 

  • Edwards, P. 1980. The production of microalgae on human wastes and their harvest by herbivorous fish. Pages 191–203in G. Shelef and C. J. Soeder (eds.),Algal biomass production. Elsevier, New York.

    Google Scholar 

  • Edwards, P., C. Polprasert, V. S. Rajput, and C. Pracharaprakitii. 1988. Use of slurry for fish culture.Waste Management Research 6:51–56.

    Google Scholar 

  • Garrett, M. K., and M. D. B. Allen. 1976. Photosynthetic purification the liquid phase of animal slurry.Environmental Pollution 5:127–139.

    Google Scholar 

  • Goldman, J. C., K. R. Tenore, J. H. Ryther, and N. Corwin. 1974. Nitrogen removal in a combined tertiary treatmentmarine aquaculture system. I. Removal efficiencies.Water Research 8:45–54.

    Google Scholar 

  • Hart, B. A., P. E. Bertram, and B. D. Scaife. 1979. Cadmium transport byChlorella pyrenoidosa.Environmental Research 28:327–335.

    Google Scholar 

  • Hemens, J., and M. H. Mason. 1968. Sewage nutrient removal by a shallow algal stream.Water Research 2:277–287.

    Google Scholar 

  • Hepher, B. 1962. Primary production in fish ponds and its application to fertilisation experiments.Limnology and Oceanography 7:131–136.

    Google Scholar 

  • Hodgson, D. R., and R. Holliday. 1973. The agronomic properties of pulverized fuel ash.Chemistry and Industry 20:785–790.

    Google Scholar 

  • Hunken, K. H., and I. D. Sekoulov. 1972. Parameters influencing phosphorus elimination by algae.Water Research 6:1087–1096.

    Google Scholar 

  • Kawai, H., P. Jureidini, J. de Conceica Neta, O. F. Motter, and R. Rossetto. 1987. The use of an algal microcrustacean polyculture system for domestic wastewater treatment.Water, Science and Technology 19:65–70.

    Google Scholar 

  • Keeney, D. R., and D. W. Nelson. 1982. Nitrogen-inorganic forms. Pages 643–658in A. L. Page, R. H. Miller, and R. Keeney. (eds.),Methods of soil analysis. Part 2—Chemical and microbiological properties. 2nd ed. Madison, Wisconsin.

  • Knauss, H. J., and J. W. Porter. 1954. The absorption of inorganic ions byChlorella pyrenoidosa.Plant Physiology 50:229–234.

    Google Scholar 

  • Konig, A., H. W. Pearson, and S. A. Silva. 1987. Ammonia toxicity to algal growth in waste stabilization ponds.Water, Science and Technology 19(12):115–122.

    Google Scholar 

  • Krauss, R. W. 1953. Inorganic nutrition of algae. Pages 85–104in J. S. Burlew (ed.),Algal culture. From laboratory to pilot plant. Carnegie Institute Publications, Washington, DC.

    Google Scholar 

  • Krishnamoorthi, K. P., M. K. Abdulappa, R. Sarkar, and R. H. Siddiqi. 1975. Productivity of sewage fertilised fish ponds.Water Research 9:269–274.

    Google Scholar 

  • Little, T. M., and J. J. Hills. 1978.Agricultural experimentation: Design and analysis. John Wiley & Sons, New York, pp. 186–627.

    Google Scholar 

  • Liu, W. K., M. H. Wong, and Y. H. Cheung. 1989. Morphological changes in the gills of tilapia fed sterilized and non-sterilized sludge.Biomedical and Environmental Sciences 2:81–91.

    Google Scholar 

  • Lund, J. W. G. 1965. The ecology of the freshwater phytoplankton.Biological Reviews 40:231–293.

    Google Scholar 

  • Maestrini, S. Y., J. M. Robert, J. W. Leftley, and Y. Collos. 1986. Ammonium thresholds for simultaneous uptake of ammonium and nitrate by oyster-pond algae.Journal of Experimental Marine Biology and Ecology 102:75–98.

    Google Scholar 

  • Marias, J., and T. Erasmius. 1977. Chemical composition of alimentary canals of mullets.Aquaculture 10:263–273.

    Google Scholar 

  • Matusiak, K., M. Pryztocka-Jusiak, K. Leozczysnka-Gerula, and M. Horoch. 1976. Studies on the purification of wastewater from the nitrogen ferilizer industry by intensive algal culture.Acta Microbiology Pollution 25:361–374.

    Google Scholar 

  • McGarry, M. G., and S. M. A. Duranni. 1972. Reuse of human wastes in agriculture. Paper presented at 11th Session ofnational conference on agricultural science, Thailand. 14 February.

  • Nambiar, K. P., and S. D. Bokil. 1981. Luxury uptake of nitrogen in flocculating algal—bacteria system.Water Research 5(15):667–669.

    Google Scholar 

  • Nichols, H. W. 1973. Growth media—freshwater. Pages 7–24in J. R. Stein (ed.),Handbook of phycological methods, culture methods and growth measurements. Cambridge University Press, Cambridge.

    Google Scholar 

  • Nikajuma, A., T. Horikoshi, and T. Sakayuchi. 1981. Studies on the accumulation of heavy metal elements in biological systems XVII Selective accumulation of heavy metal ions byChlorella regularis.European Journal of Applied Microbiology and Biotechnology 12:76–83.

    Google Scholar 

  • Oswald, W. J. 1988. Large scale culture systems. Pages 259–272in M. A. Borowitzka, and L. J. Borowitzka (eds.), Microalgal biotechnology. Cambridge University Press, Cambridge.

    Google Scholar 

  • Przytocka-Jusiak, M., M. Duszota, K. Matusiak, and R. Myselski. 1984. Intensive culture ofChlorella vulgaris of nitrogen industry wastewater.Water Research 18:1–7.

    Google Scholar 

  • Rosko, J. J., and J. W. Rachlin. 1977. The effect of cadmium, copper, mercury, zinc and lead on cell division, growth and chlorophyll ‘a’ content of the chlorophyte,Chlorella vulgaris.Bulletin of the Torrey Botanical Club 104:226–232.

    Google Scholar 

  • Sato, C., S. W. Leung, and J. L. Schnoor. 1988. Toxic response ofNitrosomonas europaea to copper in inorganic medium and wastewater.Water Research 22(9):1117–1127.

    Google Scholar 

  • Schroeder, G. 1977. Agricultural wastes in fish farming—a commercial application of the culture of single-celled organisms for protein production.Water Research 11:419–420.

    Google Scholar 

  • Schroeder, G. 1978. Autotrophic and heterotrophic production of organisms in intensely manured ponds and related fish yields.Aquaculture 14:303–325.

    Google Scholar 

  • Skowronski, T., and M. Rzeczycki. 1980. The effect of high concentration of zinc on the growth ofStichococcus bacillus andChlorella vulgaris.Acta Microbiologica 29:389–397.

    Google Scholar 

  • Spoehr, H. A., and H. W. Milner. 1984.Chlorella as a source of food.Proceeding of the American Philosophical Society 45:62–67.

    Google Scholar 

  • Starr, R. C. 1960. The culture collection algae at Indiana University.American Journal of Botany 47:67–80.

    Google Scholar 

  • Suffern, J. S., C. M. Fitzgerald, and A. T. Szluha. 1981. Trace metal concentrations in oxidation ponds.Journal of the Water Pollution Control Federation 53:1599–1608.

    Google Scholar 

  • Tacon, A. G. J., and P. N. Ferns. 1976. Use of activated sludge from domestic sewage in trout diets.Nutritional Reports International 13:549–562.

    Google Scholar 

  • Witt, V., and J. A. Borchardt. 1960. The removal of nitrogen and phosphorus from sewage effluent through the use of algal culture.Journal of Biochemical and Microbial Technology Engineering 2:187–203.

    Google Scholar 

  • Wohlfarth, G. W., and G. L. Schroeder. 1979. Use of manure in fish farming—a review.Agricultural Wastes 1:279–299.

    Google Scholar 

  • Wong, M. H. 1977. The comparison of activated and digested extracts in cultivatingChlorella pyrenoidosa andChlorella saline.Environmental Pollution 14:207–211.

    Google Scholar 

  • Wong, M. H., and S. P. Cheung. 1980. Sewage sludge and carrot waste as supplementary feed for the common carp.Cyprinus carpio. Environmental Pollution A23:29–39.

    Google Scholar 

  • Wong, M. H., and C. C. Lai. 1980. The comparison of soy-bean wastes, used tea-leaves and sewage sludge for growingChlorella pyrenoidosa.Environmental Pollution A23:247–257.

    Google Scholar 

  • Wong, M. H., and D. C. H. Pak. 1992. Removal of Cu and Ni by free and immobilised microalgae.Biomedical and Environmental Sciences 5:99–108.

    Google Scholar 

  • Wong, M. H., S. W. Yip, and K. Y. Fan. 1977. Chlorella cultivation in sludge extracts.Environmental Pollution 12:204–209.

    Google Scholar 

  • Yip, S. W., and M. H. Wong. 1978. The comparison of sewage effluent and sludge extracts in the cultivation ofChlorella pyrenoidosa.Archiv für Hydrobiologie 84:368–380.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hung, K.M., Chiu, S.T. & Wong, M.H. Sludge-grown algae for culturing aquatic organisms: Part I. Algal growth in sludge extracts. Environmental Management 20, 361–374 (1996). https://doi.org/10.1007/BF01203844

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01203844

Key words

Navigation