Skip to main content
Log in

The optics of the eye-lens and lenticular senescence

A review

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Although the lens of the eye is structurally a biological tissue, it functions as an optical element providing one third of the refracting power of the human eye, and a variable focus in younger years. Throughout a life-time the optical properties of the eye-lens alter, resulting in changes in function: there is a gradual depletion of the focussing amplitude from infancy to middle age, and a loss of transmittance in the later decades of life. The optical properties of the lens depend on its power, which in turn is determined by its physical dimensions (curvatures and thickness) and its refractive index as well as transmissivity and the organization of its internal components. The power of the functional lens is, however, modifiable by virtue of the lens being attached via the zonule to the ciliary muscle. The contraction and relaxation of the latter respectively increases and decreases lens power in accordance with innervations determined by the physical distance of external objects to be imaged on the retina. This review will consider many of these features and how alterations in any of them may lead to changes in lenticular function. However, as we have recently devoted a detailed study to presbyopia [1] its mechanism will not be considered here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pierścionek BK, Weale RA. Presbyopia - a maverick of human ageing. Arch Geront Geriatr 1995; in press.

  2. Tréton J, Courtois Y. Evidence for a relationship between longevity of mammalian species and a lens growth parameter. Gerontology 1989; 35: 88–94.

    PubMed  Google Scholar 

  3. Perkkiö J, Keskinen R. The relationship between growth and allometry, J Theor Biol 1985; 113: 81–87.

    PubMed  Google Scholar 

  4. Weale RA. A biography of the eye - development, growth, age. London: HK Lewis 1982.

    Google Scholar 

  5. Pierścionek BK, Augusteyn RC. Species variability in optical parameters of the eye lens. Clin Eye Optom 1993; 76: 22–25.

    Google Scholar 

  6. Kamitani S, Saishin M, Uosato H, Asai T, Nomura K, Saito M, Okada S, Aono S. Up-to-date analysis of school myopia part 5. Axial thickness of lens as determined length and ultrasonically using a Nidek Echo Scan US-100. Fol Ophthalmol Jap 1985; 36: 2052–2060.

    Google Scholar 

  7. Kamiya S, Saishin M, Uosatu H, Asai T, Nomura K, Saito M, Okada S, Aono S. Up-to-date analysis of school myopia. Part 6. Axial length and thickness of lens as determined by G.E. CT scan, in comparison with results obtained ultrasonically, Fol Ophthal Japon 1985; 36: 2225–2234.

    Google Scholar 

  8. Brown N. The change in shape and internal form of the lens of the eye on accommodation. Exp Eye Res 1973; 15: 441–59.

    PubMed  Google Scholar 

  9. Brown N. The change in lens curvature with age. Exp Eye Res 1974; 19: 175–183.

    PubMed  Google Scholar 

  10. Lowe RF, Clark BAJ. Radius of curvature of the anterior lens surface. Brit J Ophthal 1973; 57: 471–474.

    PubMed  Google Scholar 

  11. Pierścionek BK. In vitro alteration of human lens curvatures by radial stretching. Exp Eye Res 1993; 57: 629–535.

    PubMed  Google Scholar 

  12. Howcroft MJ, Parker JA. Aspheric curvatures for the human lens. Vision Res 1977; 17: 1217–1223.

    PubMed  Google Scholar 

  13. Nakajima A. Refractive elements of the eye as metric traits. Acta Soc Ophthalmol Jap 1968; 30: 1091–1101.

    Google Scholar 

  14. Pierścionek BK, Augusteyn RC. Shapes and dimensions of in vitro human lenses. Clin Exp Optom 1991; 74: 223–229.

    Google Scholar 

  15. Karmpfer T, Wegener A, Dragomirescu V, Hockwin O. Improved biometry of the anterior eye segment. Ophthal Res 1989; 21: 239–248.

    Google Scholar 

  16. Koretz J, Handelman GH, Brown NP. Analysis of human crystalline lens curvature as a function of accommodative state and age. Vision Res 1984; 24: 1141–1151.

    PubMed  Google Scholar 

  17. Weale RA. The senescence of human vision. Oxford: Oxford University Press 1992.

    Google Scholar 

  18. Sparrow JM, Bron AJ, Brown NAP. Estimation of the thickness of the crystalline lens from on-axis and off-axis Scheimpflug photographs. Ophthal Physiol Opt 1993; 13: 291–294.

    Google Scholar 

  19. Koretz JF, Kaufman PL, Neider MW, Goeckner PA Accomodation and presbyopia in the human eye - aging of the anterior segment. Vision Res 1989; 29: 1685–1692.

    PubMed  Google Scholar 

  20. Woinow M. Ueber die Brechungscoefficienten der verschiedenen Linsenschichten. Klin Mbl Augenh 1874; 12: 407–408.

    Google Scholar 

  21. Freytag G. Die Brechungsindices der Linse und der flüssigen Augenmedien des Menschen und höherer Tiere in verschiedenen Lebensaltern in vergleichenden Untersuchungen. Wiesbaden: JF Bergmann 1908.

    Google Scholar 

  22. Huggert A. On the form of the iso-indicial surfaces of the human crystalline lens. Acta ophthal Kbh Suppl 40, 1948.

  23. Nakao S, Ono T, Nagata R, Iwata K. Model of refractive indices in the human crystalline lens. Jap J Clin Ophththalmol 1969; 23: 903–906.

    Google Scholar 

  24. Palmer D, Sivak J. Crystalline lens dispersion. J Opt Soc Am 1981; 71: 780–782.

    PubMed  Google Scholar 

  25. Pomerantzeff O, Pantratov M, Wang G-J, Dufault P. Wide -angle optical model of the eye. Amer J Optom Physiol Optics 1984; 61: 166–176.

    Google Scholar 

  26. Pierścionek BK, Chan DYC, Ennis JP, Smith G, Augusteyn RC. A non-destructive method of constructing three-dimensional gradient index models for crystalline lenses: I. Theory and experiment. Am J Optom Physiol Optics 1988; 65: 481–491.

    Google Scholar 

  27. Pierścionek BK, Chan DYC. Refractive index gradient of human lenses, Optom Vision Sci 1989; 66: 822–829.

    Google Scholar 

  28. Smith G, Pierścionek BK, Atchison DA. The optical modelling of the human lens. Ophthal Physiol Opt 1991; 11: 359–369.

    Google Scholar 

  29. Fagerholm PP, Philipson BT, Lindström B. Normal human lens, the distribution of protein. Exp Eye Res 1981; 33: 615–620.

    PubMed  Google Scholar 

  30. Siebinga I, Vrensen GFJM, de Mul FFM, Greve J. Age-related changes in local water and protein content of human eye lenses measured by microspectroscopy. Exp Eye Res 1991; 53: 233–239.

    PubMed  Google Scholar 

  31. Koretz JF, Handelman GH. How the human eye focuses, Sci American 1988; 256: 64–71.

    Google Scholar 

  32. Satoh K. Age-related changes in the structural proteins of human lens. Exp Eye Res 1972; 14: 53–57.

    PubMed  Google Scholar 

  33. Van Heyningen R. The human lens. III. Some observations on the post-mortem lens. Exp Eye Res 1972; 13: 155–160.

    PubMed  Google Scholar 

  34. Nordmann J. Le noyau du cristallin 1. La teneur en eau. Arch Opthalmol (Paris) 1973; 33: 81–86.

    Google Scholar 

  35. Fisher RF, Pettet BE. Presbyopia and the water content of the human crystalline lens. J Physiol 1973; 234: 443–447.

    PubMed  Google Scholar 

  36. Huizinga A, Bot ACC, de Mul FFM, Vrensen GFJM, Greve J. Local variation in absolute water content of human and rabbit eye lenses measured by Raman microspectroscopy. Exp Eye Res 1989; 48: 487–496.

    PubMed  Google Scholar 

  37. Pierścionek BK. The effects of development and ageing on the structure and function of the crystalline lens. PhD Dissertation Melbourne University 1988.

  38. Pierścionek BK. Presbyopia - effect of refractive index. Clin Exp Optom 1990; 76: 83–91.

    Google Scholar 

  39. Smith G, Atchison DA, Pierścionek BK. Modelling the ageing human eye. J Opt Soc Am A 1992; 9: 2111–2117.

    PubMed  Google Scholar 

  40. Sivak JG. The Glenn A. Fry award lecture: optics of the crystalline lens. Am J Optom Physiol Optics 1985; 62: 299–308.

    Google Scholar 

  41. Pierścionek BK, Augusteyn RC Structure/function relationship between optics and biochemistry of the lens. Lens and Eye Toxic Res 1991; 8: 229–243.

    Google Scholar 

  42. Vérétout F, Tardieu A. The protein concentration gradient within eye lens might originate from constant osmotic pressure coupled to differential interactive properties of crystallins. Eur Biophys J 1989; 17: 61–8.

    PubMed  Google Scholar 

  43. Magid AD, Kenworthy AK, Mc Intosh TJ. Colloid osmotic pressure of steer crystallins: implications for the origin of the refractive index gradient and transparency of the lens. Exp Eye Res 1992; 55: 615–627.

    PubMed  Google Scholar 

  44. Kenworthy AE, Magid AD, Oliver TN, Mc Intosh TJ. Colloid osmotic pressure of steerα andβ-crystallins: possible functional roles for lens crystallin distribution and structural diversity, Exp Eye Res 1994; 59: 11–30.

    PubMed  Google Scholar 

  45. Hockwin O, Schmutter J, Müller HK. Untersuchungen über Gewicht und Volumen verschieden alter Rinderlinsen. Graefe's Arch Ophthal 1963; 166: 136–151.

    Google Scholar 

  46. Hockwin O, Rast F, Rink H, Munninghoff J, Twenhoven H. Water content of lenses of different species. Interdisc Topics Gerontol 1978; 13: 102–108.

    Google Scholar 

  47. Pierścionek BK. Growth and ageing effects on the refractive index gradient in the equatorial plane of the bovine lens. Vision Res 1989; 29: 1759–1766.

    PubMed  Google Scholar 

  48. Bito LZ. Patterns of cellular organization and cell division in the epithelium of the cultured lens. PhD Dissertation Columbia University 1963.

  49. Bito LZ, Harding CV. Patterns of cellular organization and cell division in the epithelium of the cultured lens. Exp Eye Res 1965; 4: 146–161.

    PubMed  Google Scholar 

  50. Bito LZ, Miranda OC. Presbyopia - the need for a closer look In Presbyopia (Stark L and Obrecht G, eds).New York: Fairchild Publications 1985: pp 411–429.

    Google Scholar 

  51. Sivak JG, Mandelman T. Chromatic dispersion of ocular media, Vision Res 1982; 22: 977–1003.

    Google Scholar 

  52. Weale RA. The lenticular nucleus, light and the retina. Exp Eye Res 1991; 53: 213–218.

    PubMed  Google Scholar 

  53. Brewster D. On the structure of the crystalline lens in fishes and quadrupeds, as ascertained by its action on polarized light, Phil Trans Roy Soc London B 1816; 106: 311–317.

    Google Scholar 

  54. Brewster D. On the anatomical and optical structures of the crystalline lenses of animals, particularly that of the cod. Phil Trans R Soc Lond 1833; 123: 323–332.

    Google Scholar 

  55. Weale RA. Sex, age, and birefringence of the human crystalline lens. Exp Eye Res 1979; 29: 449–461.

    PubMed  Google Scholar 

  56. klein Brink HB. Birefringence of the human crystalline lens in vivo. J Opt Soc Amer A 1991; 8: 1788–1793.

    Google Scholar 

  57. Bettelheim F. On the optical anisotropy of lens fibre cells. Exp Eye Res 1975; 21: 231–234.

    PubMed  Google Scholar 

  58. Pierścionek BK. An explanation of isogyre formation by the eye lens. Ophthalmol Physiol Opt 1993; 13: 91–94.

    Google Scholar 

  59. Pierścionek BK, Chan DYC. A mathematical description of isogyre formation in refracting structures. Ophthalmol Physiol Opt 1993; 13: 212–16.

    Google Scholar 

  60. Charman WN. Explanation for the observation of isogyres in crystalline lenses viewed between crossed polarizers. Ophthalmol Physiol Opt 1993; 13: 209–211.

    Google Scholar 

  61. Pierścionek BK. Isochromatics in eye lenses. Exp Eye Res 1994; 59: 121–124.

    PubMed  Google Scholar 

  62. Wald G, Griffin DR. The change in refractive power of the human eye in dim and bright light. J Opt Soc Am 1947; 37: 321–336.

    Google Scholar 

  63. Bedford RE, Wyszecki G. Axial chromatic aberration of the human eye. J Opt Soc Am 1957; 47: 564–565.

    PubMed  Google Scholar 

  64. Howarth PA, Bradley A. The longitudinal chromatic aberration of the eye and its correction. Vision Res 1986; 26: 361–366.

    PubMed  Google Scholar 

  65. Sivak JG, Millodot M. Axial chromatic aberration of crystalline lens. Atti della Fondazione Giorgio Ronchi 1975; 30: 173–177.

    Google Scholar 

  66. Millodot M, Sivak J. Contribution of the cornea and lens to the spherical aberration of the eye. Vision Res 1979; 19: 685–687.

    PubMed  Google Scholar 

  67. Sivak JG, Kreuzer RO. Spherical aberration of the crystalline lens. Vision Res 1983; 23: 59–70.

    PubMed  Google Scholar 

  68. Sivak JG, Dovrat A. Embryonic lens of the human eye as an optical structure. Am J Optom Physiol Optics 1987; 64: 599–603.

    Google Scholar 

  69. Dillon J. The photophysics and photobiology of the eye. J Photochem Photobiol B 1991; 10: 23–40.

    PubMed  Google Scholar 

  70. Young RW. Age-related cataract. New York: Oxford University Press 1991.

    Google Scholar 

  71. Wald G. Human vision and the spectrum. Science NY 1945; 101: 653–658.

    Google Scholar 

  72. Wright WD. Researches in normal and defective colour vision. London: Henry Kimpton 1946.

    Google Scholar 

  73. Stiles WS, Burch JB. N.P.L. colour-matching investigation: final report (1958). Optica Acta 1959; 6: 1–26.

    Google Scholar 

  74. Van Norren D, Vos JJ. Spectral transmission of the human ocular media. Vision Res 1974; 14: 1237–1244.

    PubMed  Google Scholar 

  75. Sample PA, Esterson FT, Weinreb RN, Boynton RM. The aging lens: in vivo assessment of light absorption in 84 human eyes. Invest Ophthal Vis Sci 1988; 29: 1306–1311.

    PubMed  Google Scholar 

  76. Weale RA. Age and the transmittance of the human crystalline lens. J Physiol 1988; 395: 577–587.

    PubMed  Google Scholar 

  77. Dillon J, Atherton ST. Time resolved spectroscopic studies on the intact human lens. Photochem Photobiol 1990; 51: 465–468.

    PubMed  Google Scholar 

  78. Mellerio J. Yellowing of the human lens: nuclear and cortical contributions. Vision Res 1987; 27: 1581–1587.

    PubMed  Google Scholar 

  79. Van Heyningen R. The glucoside of 3-Hydroxykynurenine and other fluorescent compounds in the human lens In The human lens -in relation to cataract (Eds Elliott K, Fitzsimmons DW.). Elsevier Amsterdam 1973.

  80. Said FS, Weale RA. The variation with age of the spectral transmissivity of the living human crystalline lens. Gerontologia 1959; 3: 213–231.

    PubMed  Google Scholar 

  81. Weale RA. Human lenticular fluorescence and transmissivity, and their effects on vision. Exp Eye Res 1985; 41: 457–473.

    PubMed  Google Scholar 

  82. Hockwin O. Biometry of the anterior eye segment In Presbyopia (Eds Stark L, Obrecht G.). New York: Fairchild Publications 1987.

    Google Scholar 

  83. Zeimer RC, Noth JM. A new method of measuring in vivo the lens transmittance, and study of lens scatter, fluorescence and transmittance. Ophthal Res 1984; 16: 246–255.

    Google Scholar 

  84. Van Best JA, Tjin A, Tsoi EWSJ, Boot JP, Oosterhuis JA. In vivo assessment of lens trasmission for blue-green light by autofluorescence measurement. Ophthal Res 1985; 17: 90–95.

    Google Scholar 

  85. Satoh K, Bando M, Nakajima A. Fluorescence in human lens. Exp Eye Res 1973; 16: 167–172.

    PubMed  Google Scholar 

  86. Kurzel R, Wolbarsht ML, Yamanashi BS. Spectral studies on normal and cataractous intact human lenses. Exp Eye Res 1973; 17: 65–71.

    PubMed  Google Scholar 

  87. Jacobs R, Krohn DL. Variations in fluorescence characteristics of intact human crystalline lens segments as a function of age. J Geront 1976; 31: 641–647.

    PubMed  Google Scholar 

  88. Bleeker JC, van Best JA, Vrij L, van der Velde EA, Oosterhuis JA. Autofluorescence of the lens in diabetic and healthy subjects by fluorophotometry. Investig Ophthalmol Vis Sci 1986; 27: 791–794.

    Google Scholar 

  89. Jacobs R, Krohn DL. Fluorescence intensity profile of human lens sections. Invest Ophthal Vis Sci 1981; 20: 117–120.

    PubMed  Google Scholar 

  90. Lerman S, Borkman RF. A molecular model of lens aging, nuclear and cortical cataract formation. Metab Pediat Ophthalmol 1978; 3: 27–35.

    Google Scholar 

  91. Bando M, Ishii Y, Nakajima A. Changes in blue fluorescence intensity and coloration of human lens protein with normal lens aging and nuclear cataract. Ophthal Res 1976; 8: 456–463.

    Google Scholar 

  92. Goldmann H. Studien über die Alterskernstreifen der Linse. Arch Augenheilk 1937; 110: 405–414.

    Google Scholar 

  93. Weale RA. The aging eye London: HK Lewis 1963.

    Google Scholar 

  94. Koretz JF, Bertasso AM, Neider MW, Kaufman PL. Slit-lamp studies of the rhesus monkey eye: III. The zones of discontinuity. Exp Eye Res 1988; 46: 871–880.

    PubMed  Google Scholar 

  95. Fagerholm P, Philipson BT, Lydahl E. Subcapsular zones of discontinuity in the human lens. Ophthal Res (suppl 1) 1990; 22: 51–55.

    Google Scholar 

  96. Brown NAP, Sparrow JM, Bron AJ. Central compaction in the process of lens growth as indicated by lamellar cataract. Brit J Ophthalmol 1988; 72: 538–544.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pierscionek, B.K., Weale, R.A. The optics of the eye-lens and lenticular senescence. Doc Ophthalmol 89, 321–335 (1995). https://doi.org/10.1007/BF01203708

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01203708

Key words

Navigation