Skip to main content
Log in

A generalized evolutionary method for numerical topology optimization of structures under static loading conditions

  • Research Papers
  • Published:
Structural optimization Aims and scope Submit manuscript

Abstract

Generalized evolutionary methods, which successively construct and solve static equilibrium problems with progressive mesh adaptation, are useful tools for defining structures that utilize their construction material to greatest effect in the finite element sense. By basing the successive element erosion upon (i) the contribution of an element to the strain energy of a structure and (ii) a certain material efficiency indicator of a structure, several weaknesses associated with previous methods have been overcome. Under static loading conditions, the strain energy contribution of an element is determined solely by the related stiffness and displacement vector. Consequently, the method is effective, and efficient when applied to problems involving such loading conditions. The efficacy of the method is demonstrated through numerical applications to the problem of optimizing the topologies of two structures, a cantilever structure and a Michell structure

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bendsøe, M.P. 1989: Optimal shape design as a material distribution problem.Struct. Optim. 1, 193–202

    Article  Google Scholar 

  • Bendsøe, M.P.; Kikuchi, N. 1988: Generating optimal topologies in structural design using a homogenization method.Comp. Meth. Appl. Mech. Engng. 71, 197–224

    Article  Google Scholar 

  • Diaz, A.R.; Kikuchi, N. 1992: Solutions to shape and topology eigenvalue optimization problems using a homogenization method.Int. J. Num. Meth. Engng. 35, 1487–1502

    Article  MATH  MathSciNet  Google Scholar 

  • Gallagher, R.H.; Zienkiewicz, O.C. 1973:Optimum structural design. New York: Wiley

    MATH  Google Scholar 

  • Ma, Z.D.; Kikuchi, N.; Cheng, H.C.; Hagiwara, I. 1995: Topological optimization technique for free vibration problems.J. Appl. Mech., ASME 62, 200–207

    Article  MATH  Google Scholar 

  • Olhoff, N.; Bendsøe, M.P.; Rasmussen, J. 1991: On CAD-integrated structural topology and design optimization.Comp. Meth. Appl. Mech. Engng. 89, 259–279

    Article  Google Scholar 

  • Rozvany, G.I.N.; Zhou, M.; Birker, T. 1992: Generalized shape optimization without homogenization.Struct. Optim. 4, 250–252

    Article  Google Scholar 

  • Rozvany, G.I.N.; Bendsøe, M.P.; Kirsch, U. 1995: Layont optimization of structures.Appl. Mech. Rev. 48, 41–119

    Article  Google Scholar 

  • Suzuki, K.; Kikuchi, N. 1991: A homogenization method for shape and topology optimization.Comp. Meth. Appl. Mech. Engng. 93, 291–318

    Article  MATH  Google Scholar 

  • Tenek, L.H.; Hagiwara, I. 1993: Optimization of material distribution within isotropic and anisotropic plates using homogenization.Comp. Meth. Appl. Mech. Engng. 109, 155–167

    Article  MATH  Google Scholar 

  • Xie, Y.M.; Steven, G.P. 1993: A simple evolutionary procedure for structural optimization.Comput. Struct. 49, 885–896

    Article  Google Scholar 

  • Zhao, C.; Steven, G.P.; Xie, Y.M. 1996a: Evolutionary natural frequency optimization of thin plate bending vibration problems.Struct. Optim. 11, 244–251

    Article  Google Scholar 

  • Zhao, C.; Steven, G.P.; Xie, Y.M. 1996b: General evolutionary path for fundamental natural frequencies of structural vibration problems: towards optimum from below.Struct. Engng. & Mech. 4, 513–527

    Article  Google Scholar 

  • Zhao, C.; Steven, G.P.; Xie, Y.M. 1997a: Effect of initial nondesign domain on optimal topologies of structures during natural frequency optimization.Comp. & Struct. 62, 119–131

    Article  MATH  MathSciNet  Google Scholar 

  • Zhao, C.; Steven, G.P.; Xie, Y.M. 1997b: Evolutionary natural frequency optimization of 2D structures with additional nonstructural masses.Eng. Comp. 14, 233–251

    Article  Google Scholar 

  • Zhao, C.; Steven, G.P.; Xie, Y.M. 1997c: Evolutionary optimization of maximizing the difference between two natural frequencies of a vibrating structure.Struct. Optim. 13, 148–154

    Article  Google Scholar 

  • Zhao, C.; Steven, G.P.; Xie, Y.M. 1998: A generalized evolutionary method for natural frequency optimization of membrane vibration problems in finite element analysis.Comp. & Struct. 66, 353–364

    Article  MATH  Google Scholar 

  • Zhou, M.; Rozvany, G.I.N. 1992: DCOC: an optimality criteria method for large systems. Part I: theory.Struct. Optim. 5, 12–25

    Article  Google Scholar 

  • Zhou, M.; Rozvany, G.I.N. 1993: DCOC: an optimality criteria method for large systems. Part II: algorithm.Struct. Optim. 6, 250–262

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Hornby, P., Steven, G.P. et al. A generalized evolutionary method for numerical topology optimization of structures under static loading conditions. Structural Optimization 15, 251–260 (1998). https://doi.org/10.1007/BF01203540

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01203540

Keywords

Navigation