Skip to main content
Log in

Grain-size and heat-treatment effects in hydrogen-assisted cracking of austenitic stainless steels

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hydrogen embrittlement of 304L and 316L types austenitic stainless steels has been studied by charging thin tensile specimens with hydrogen through cathodic polarization. Throughout this study we have compared solution-annealed samples, having various prior austenite grain size, with samples given the additional sensitization treatment. The results of the tensile tests while undergoing cathodic charging show that the additional sensitization treatment and coarse-grained samples together, lower the mechanical properties in both 304L and 316L types, and the sensitized steel is more susceptible to hydrogen-assisted cracking. However, the room-temperature yield and ultimate strengths, and the elongation of type 316L, were much less affected depending on the heat treatment and prior austenitic grain size. The fracture surfaces of the specimens tested while cathodically charged show considerable differences between the annealed and the sensitized specimens. The sensitized coarse-grained specimens were predominantly intergranular in both 304L and 316L types, while the annealed 316L type specimens fracture shows massive regions of microvoid coalescence producing ductile rupture and the annealed 304L type specimens fracture were primarily transgranular and cleavage-like. Sensitization seems both to facilitate the penetration of hydrogen along the grain boundaries into the steel and to introduce susceptibility to fracture along grain boundaries while refined grain size improves resistance regardless of the failure mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. L. Holzworth,Corrosion 25 (1969) 107.

    Google Scholar 

  2. R. Lagneborg,J. Iron Steel Inst. 207 (1969) 36.

    Google Scholar 

  3. M. B. Whiteman andA. R. Troiano,Corrosion 21 (1965) 53.

    Google Scholar 

  4. J. Kolts, ASTM Publication ASTM STP 610 (ASTM, Pennsylvania, 1976) p. 336.

    Google Scholar 

  5. A. W. Thompson, “Hydrogen in Metals”, edited by I. M. Bernstein and A. W. Thompson (A.S M., Metals Park, Ohio, 1974) p. 91.

    Google Scholar 

  6. H. Hanninen andT. Hakkarainen,Corrosion 36 (1980) 47.

    Google Scholar 

  7. D. Eliezer, D. G. Chakrapani, C. J. Altstetter andE. N. Pugh,Met. Trans. 10A (1979) 935.

    Google Scholar 

  8. E. Minkovitz andD. Eliezer,J. Matter. Sci. 16 (1981) 2507.

    Google Scholar 

  9. M. R. Louthen Jr, “Hydrogen in Metals”, edited by I. M. Bernstein and A. W. Thompson (A.S.M., Metals Park, Ohio, 1974) p. 53.

    Google Scholar 

  10. C. L. Briant, “Hydrogen Effects in Metals”, edited by I. M. Bernstein and A. W. Thompson (TMS-AIME, Pennsylvania, 1980) p. 527.

    Google Scholar 

  11. H. Hanninen, T. Hakkarainen andP. Nenonen,ibid.“, p. 575.

    Google Scholar 

  12. C. L. Briant andA. M. Ritter,Scripta Metall. 13 (1979) 177.

    Google Scholar 

  13. C. L. Briant,Met. Trans. 9A (1978) 731.

    Google Scholar 

  14. ASTM Standard Number E8.

  15. A. W. Thompson,Mater. Sci. Eng. 14 (1974) 253.

    Google Scholar 

  16. R. B. Benson Jr, R. K. Dann andL. W. Roberts Jr,Trans. TMS-AIME 242 (1968) 2199.

    Google Scholar 

  17. R. M. Vennett andG. S. Ansell,Trans. ASM 60 (1967) 242.

    Google Scholar 

  18. C. L. Briant,Scripta Metall. 12 (1978) 541.

    Google Scholar 

  19. Idem, Met. Trans. A 10A (1979) 181.

    Google Scholar 

  20. E. Minkovitz andD. Eliezer,J. Mater. Sci. Lett. in press.

  21. J. P. Fidelle, R. Bernardi, R. Broudeur, C. Roux andM. Rapin, ASTM Publication ASTM STP 543 (ASTM, Philadelphia, 1974) p. 221.

    Google Scholar 

  22. R. P. M. Proctor andH. W. Paxton,Trans. ASM 62 (1969) 989.

    Google Scholar 

  23. E. G. Coleman, D. Weinstein andW. Rostoker,Acta Metall. 9 (1961) 491.

    Google Scholar 

  24. A. W. Thompson andI. M. Bernstein,Rev. Coatings Corr. 2 (1978) 5.

    Google Scholar 

  25. I. M. Bernstein andA. W. Thompson, “Alloy and Microstructural Design”, edited by J. K. Tien and G. S. Ansell (Academic Press, New York, 1976) Ch. IX, p. 303.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minkovitz, E., Eliezer, D. Grain-size and heat-treatment effects in hydrogen-assisted cracking of austenitic stainless steels. J Mater Sci 17, 3165–3172 (1982). https://doi.org/10.1007/BF01203479

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01203479

Keywords

Navigation