Skip to main content
Log in

Ultraviolet spectra of the complexes of acridine orange with deoxyribonucleic acid and polyphosphates

  • Published:
Biophysik Aims and scope Submit manuscript

Summary

Two kinds of changes were found in ultraviolet spectrum of acridine orange bound to polyphosphate and native or denatured DNA: (a) changes similar to those caused by aggregation in the solutions of pure acridine orange (i.e. blue shifts of the bands at 37300 cm−1 and 43670 cm−1, a decrease of absorbance of the band at 34600 cm−1 and an increase of absorbance of the band at 43670 cm−1), which were observed at those ratiosP/D, when the dye formed aggregates on the surface of the polyanion; (b) a decrease of absorbance in the whole near ultraviolet region, which had high value even when isolated dye molecules were bound to the polyanion. While the first kind of changes is due to mutual interactions between the aggregated acridine orange molecules, the second kind can be explained as due to interaction of the dye molecules with adjacent chromophores of the polyanion and/or solvent. The maximum value of the hypochromic effect in the near ultraviolet maximum was higher for complexes of denatured DNA than for complexes of native DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bradley, D. F.: Trans. N.Y. Acad. Sci. Ser. II24, 64 (1961).

    Google Scholar 

  2. —, andM. K. Wolf: Proc. nat. Acad. Sci. (Wash.)45, 944 (1959).

    Google Scholar 

  3. Cairns, J.: Cold Spring Harb. Symp. Quant. Biol.27, 311 (1962).

    PubMed  Google Scholar 

  4. Carrol, N. V., R. W. Longley, andJ. H. Roe: J. biol. Chem.220, 583 (1956).

    PubMed  Google Scholar 

  5. Cerriotti, G.: J. biol. Chem.214, 59 (1955).

    PubMed  Google Scholar 

  6. DeVoe, H.: J. chem. Phys.37, 1534 (1962).

    Google Scholar 

  7. —: Biopolymers Symp.1, 251 (1964).

    Google Scholar 

  8. Kleinwächter, V.: Studia Biophys.1, 329 (1966).

    Google Scholar 

  9. Lerman, L. S.: J. molec. Biol.3, 18 (1961).

    PubMed  Google Scholar 

  10. Lowry, H. O., N. J. Rosenbrough, A. L. Farr, andR. J. Randall: J. biol. Chem.193, 265 (1951).

    PubMed  Google Scholar 

  11. Luzzati, V., F. Masson, andL. S. Lerman: J. molec. Biol.3, 634 (1961).

    PubMed  Google Scholar 

  12. Martin, J. B., andD. M. Doty: Anal. Chem.21, 965 (1949).

    Google Scholar 

  13. Michaelis, L.: Cold. Spring. Harb. Symp. Quant. Biol.12, 131 (1947).

    Google Scholar 

  14. Neville, D. M., Jr., andD. F. Bradley: Biochim. biophys. Acta (Amst.)50, 397 (1961).

    Google Scholar 

  15. —, andD. R. Davies: J. molec. Biol.17, 57 (1966).

    PubMed  Google Scholar 

  16. Orgel, A., andS. Brenner: J. molec. Biol.3, 762 (1961).

    PubMed  Google Scholar 

  17. Peacocke, A. R., andJ. N. H. Skerret: Trans. Faraday Soc.52, 261 (1965).

    Google Scholar 

  18. Riva, S. C.: Biochem. biophys. Res. Commun.23, 606 (1966).

    PubMed  Google Scholar 

  19. Stone, A. L., andA. F. Bradley: J. Amer. chem. Soc.83, 3627 (1961).

    Google Scholar 

  20. Weill, G., andM. Calvin: Biopolymers1, 401 (1963).

    Google Scholar 

  21. Zamenhof, S.: Biochem. Prep.6, 8 (1958).

    Google Scholar 

  22. Zanker, V.: Z. physik. Chem.199, 225 (1952).

    Google Scholar 

  23. —,M. Held undH. Rammensee: Z. Naturforsch.14b, 789 (1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleinwächter, V., Koudelka, J. Ultraviolet spectra of the complexes of acridine orange with deoxyribonucleic acid and polyphosphates. Biophysik 5, 119–125 (1968). https://doi.org/10.1007/BF01202897

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01202897

Keywords

Navigation