Abstract
An integer partition {λ1,λ2,...,λ v } is said to be graphical if there exists a graph with degree sequence 〈λ i 〉. We give some results corcerning the problem of deciding whether or not almost all partitions of even integer are non-graphical. We also give asymptotic estimates for the number of partitions with given rank.
This is a preview of subscription content, access via your institution.
References
- [1]
G. Andrews: Sieves for theorems of Euler, Ramanujan and Rogers, in:The Theory of Arithmetic Functions, Lecture Notes in Math.251, (AA. Gioia and D. L. Goldsmith, eds.), 1–20, Springer, Berlin, 1971.
- [2]
A. O. L. Atkin: A note on ranks and conjugacy of partitions,Quart. J. Math. Oxford Ser (2),17 (1966), 335–338.
- [3]
F. C. Auluck, S. Chowla andH. Gupta:J. Indian Math. Soc. 6 (1942) 105–12.
- [4]
D. Bressoud: Extension of the partition Sieve,J. Number Th. 12 (1980), 87–100.
- [5]
F. J. Dyson: Some guesses in the theory of partitions,Eureka (Cambridge),8 (1944), 10–15.
- [6]
P. Erdős andT. Gallai: Graphs with prescribed degrees of vertices, (Hungarian),Mat. Lapok 11 (1960), 264–74.
- [7]
P. Erdős andJ. Lehner: The distribution of the number of summands in the partitions of a positive integer,Duke Math. J. 8 (1941), 335–45.
- [8]
F. Harary:Graph Theory, Addison-Wesley, 1969.
- [9]
C. St. J. A. Nash-Williams: Valency sequences which force graphs to have Hamiltonian circuits; Interim Report C. & O. Research Report, Fac. of Math., University of Waterloo.
- [10]
K. F. Roth andSzekeres: Some asymptotic formulas in the theory of partitions,Quart. J. Math. Oxford Ser. (2) 5 (1954), 241–259.
- [11]
M. Szalay andP. Turán: On some problems of a statistical theory of partitions with application to characters of the symmetric group I,Acta Math. Acad. Scien. Hungaricae 29 (1977), 361–379.
- [12]
M. Szalay andP. Turán: On some problems of a statistical theory of partitions with application to characters of the symmetric group II,Acta Math. Acad. Scien. Hungaricae 29 (1977), 381–392.
- [13]
M. Szalay andP. Turán: On some problems of a statistical theory of partitions with application to characters of the symmetric group III,Acta Math. Acad. Scien. Hungaricae 32 (1978), 129–155.
- [14]
E. M. Wright: The evolution of unlabelled graphs,J. London Math. Soc. 14 (1976), 554–558.
- [15]
E. M. Wright: Graphs on unlabelled nodes with a large number of edges,Proc. London Math. Soc. 28 (1974), 577–94.
Author information
Affiliations
Rights and permissions
About this article
Cite this article
Erdős, P., Richmond, L.B. On graphical partitions. Combinatorica 13, 57–63 (1993). https://doi.org/10.1007/BF01202789
Received:
Issue Date:
AMS subject classification code (1991)
- 10 J 20
- 05 C 99