Hadwiger's conjecture forK 6-free graphs

Abstract

In 1943, Hadwiger made the conjecture that every loopless graph not contractible to the complete graph ont+1 vertices ist-colourable. Whent≤3 this is easy, and whent=4, Wagner's theorem of 1937 shows the conjecture to be equivalent to the four-colour conjecture (the 4CC). However, whent≥5 it has remained open. Here we show that whent=5 it is also equivalent to the 4CC. More precisely, we show (without assuming the 4CC) that every minimal counterexample to Hadwiger's conjecture whent=5 is “apex”, that is, it consists of a planar graph with one additional vertex. Consequently, the 4CC implies Hadwiger's conjecture whent=5, because it implies that apex graphs are 5-colourable.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    K. Appel, andW. Haken: Every planar map is four colorable. Part I. Discharging,Illinois J. Math. 21 (1977), 429–490.

    Google Scholar 

  2. [2]

    K. Appel, W. Haken, andJ. Koch: Every planar map is four colorable. Part II. Reducibility,Illinois J. Math. 21 (1977), 491–567.

    Google Scholar 

  3. [3]

    G. A. Dirac: A property of 4-chromatic graphs and some remarks on critical graphs,J. London Math. Soc. 27 (1952), 85–92.

    Google Scholar 

  4. [4]

    H. Hadwiger: Über eine Klassifikation der Streckenkomplexe,Vierteljahrsschr. Naturforsch. Ges. Zürich 88 (1943), 133–142.

    Google Scholar 

  5. [5]

    L. Jørgensen: Contractions toK 8,J. Graph Theory, to appear.

  6. [6]

    H. A. Jung: Eine Verallgemeinerung desn-fachen Zusammenhangs für Graphen,Math. Ann. 187 (1970), 95–103.

    Google Scholar 

  7. [7]

    W. Mader: Homomorphiesätze für Graphen,Math. Ann. 178 (1968), 154–168.

    Google Scholar 

  8. [8]

    W. Mader: Über die Maximalzahl kreuzungsfreierH-Wege,Arch. Math. (Basel) 31 (1978), 387–402.

    Google Scholar 

  9. [9]

    W. Mader: Über trennende Eckenmengen in homomorphiekritischen Graphen,Math. Ann. 175 (1968), 243–252.

    Google Scholar 

  10. [10]

    J. Mayer: Conjecture de Hadwiger:k=6. II-Réductions de sommets de degré 6 dans les graphes 6-chromatiques contraction-critiques.Discrete Math. 101 (1992), 213–222.

    Google Scholar 

  11. [11]

    J. Mayer: Hadwiger's conjecture (k=6): neighbour configurations of 6-vertices in contraction-critical graphs,Discrete Math. 74 (1989), 137–148.

    Google Scholar 

  12. [12]

    N. Robertson, andP. D. Seymour: Graph Minors. IX. Disjoint crossed paths,J. Combinatorial Theory, Ser. B,49 (1989), 40–77.

    Google Scholar 

  13. [13]

    P. D. Seymour: Disjoint paths in graphs,Discrete Math. 29 (1980), 293–309.

    Google Scholar 

  14. [14]

    Y. Shiloach: A polynomial solution to the undirected two paths problem,J. Assoc. Comp. Mach. 27 (1980), 445–456.

    Google Scholar 

  15. [15]

    C. Thomassen: 2-linked graphs,European J. Combinatorics 1 (1980), 371–378.

    Google Scholar 

  16. [16]

    W. T. Tutte: The factorization of linear graphs,J. London Math. Soc. 22 (1947), 107–111.

    Google Scholar 

  17. [17]

    K. Wagner: Über eine Eigenschaft der ebenen Komplexe,Math. Ann. 114 (1937), 570–590.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

Research partially supported by NSF grants number DMS 8903132, and DMS 9103480 respectively. Both authors were also partially supported by the DIMACS Center at Rutgers University, and the research was carried out partially under a consulting agreement with Bellcore.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Robertson, N., Seymour, P. & Thomas, R. Hadwiger's conjecture forK 6-free graphs. Combinatorica 13, 279–361 (1993). https://doi.org/10.1007/BF01202354

Download citation

AMS subject classification code (1991)

  • 05 C 15
  • 05 C 75