Skip to main content
Log in

Study of corrosion phenomena of aluminium bond wire in integrated circuits using several surface- and microanalytical techniques

Studium von Korrosionserscheinungen an Aluminium-Drahtverbindungen in integrierten Schaltkreisen mittels Oberflächen- und Mikroanalyse

  • Published:
Microchimica Acta Aims and scope Submit manuscript

Summary

The corrosion products were identified using laser microprobe mass analysis to be mainly Al oxides (hydroxides), Al sulphates and Al chlorides. Electron probe microanalysis showed the layered structure of the corroded wire and indicated the high chloride concentrations at the Ni contact side of the wire. Laboratory simulation tests with acceleration of the corrosion process, and variation of the critical parameters were performed. Auger and X-ray photoelectron spectroscopy, analytical electron microscopy and secondary ion mass spectrometry were used to study the observed corrosion phenomena. The use of these techniques showed that the Al corrosion and subsequent pitting formation are enhanced by the presence of water as a transport medium and surface electrolyte in an oxygenrich atmosphere, with chloride ions as stimulating and activating species. Using the analytical results, a proposal is made for the corrosion reactions. All critical and important parameters could be traced in the transistor systems by electron microscopy and residual gas (and moisture) analysis using mass spectrometry.

Zusammenfassung

Als hauptsächliche Korrosionsprodukte wurden mittels LAMMA Aluminium-Oxide bzw.-Hydroxide sowie Aluminium-Sulfate und -Chloride identifiziert. Mittels Elektronenstrahlmikroanalyse konnten das Vorhandensein einer Schichtstruktur auf dem korrodierten Draht und hohe Chlorid-Konzentrationen an der Seite des Nickel-Kontaktes am Draht nachgewiesen werden. Weiters wurden Modellversuche mit beschleunigtem Korrosionsprozeß und Variation der kritischen Parameter durchgeführt. Die auftretenden Korrosionsphänomene wurden mit AES, XPS, Elektronenmikroskopie und SIMS studiert. Der Einsatz dieses Methodenverbundes führte zu dem Ergebnis, daß die Korrosion von Aluminium und der nachfolgende Lochfraß in sauerstoffreicher Atmosphäre durch Wasser, welches als Transportmedium und Oberflächenelektrolyt wirkt, verstärkt wird. Chloridionen wirken korrosionserhöhend. Aufbauend auf den analytischen Ergebnissen, wird ein Vorschlag für die ablaufenden Korrosionsreaktionen gemacht. Alle wichtigen Einflußgrößen im Transistorsystem konnten mittels Elektronenmikroskopie und massenspektrometrischer Restgas-Feuchtigkeits-Analyse ermittelt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. W. Green, IEEE 17th Annual Proc. Rel. Phys. Symp., edited by the Institute of Electrical and Electronics Engineers Inc., San Francisco, Ca., April 24–26, 213 (1979).

  2. D. J. Levinthal, Semiconductor International4, 33 (1979).

    Google Scholar 

  3. C. A. Harper, Handbook of Electronic Packaging, Edited by C. A. Harper, New York: McGraw Hill. 1969.

    Google Scholar 

  4. P. Courtney-Saunders, Reliability Physics Brief7, 1 (1978).

    Google Scholar 

  5. R. W. Thomas, Proc. of the 26th Electronic Components Conference, edited by the Institute of Electrical and Electronics Engineers Inc., San Francisco, Ca., April 26–28, 272 (1976).

  6. R. F. Haack and A. Schumka, Abstracts form the ARPA/NBS Workshop, Gaithersburg, Md., March 22–23, 14 (1978).

  7. E. Denoyer, R. Van Grieken, F. Adams, and D. F. S. Natusch, Analyt. Chemistry54, 26A (1982).

    Google Scholar 

  8. G. Morrison and G. Slodzian, Analyt. Chemistry47, 933A (1975).

    Google Scholar 

  9. M. Van Craen, P. Van Espen, and F. Adams, Rev. Sci. Instrum.53, 1007 (1982).

    Google Scholar 

  10. K. Barton, Protection Against Atmospheric Environment, Theories and Methods, chapter 6. New York: Wiley. 1976.

    Google Scholar 

  11. C. D. Wagner, D. E. Passoja, H. F. Hillery, T. G. Kinisky, H. A. Six, W. I. Jansen, and J. A. Taylor, J. Vac. Sci. Technol.21, 933 (1982).

    Google Scholar 

  12. R. Gossnik, H. A. M. de Grefte, and H. W. Werner, J. Amer. Cer. Soc.62, 4 (1979).

    Google Scholar 

  13. M. F. Abd Rabbo, G. C. Wood, J. A. Richardson, and C. K. Jackson, Corros. Sci.14, 645 (1974).

    Google Scholar 

  14. J. A. Richardson and G. C. Wood, Corros. Sci.10, 313 (1970).

    Google Scholar 

  15. J. A. Richardson and G. C. Wood, J. Electrochem. Soc.120, 193 (1973).

    Google Scholar 

  16. A. F. Beck, M. A. Heine, D. S. Keir, D. Van Rooyen, and M. J. Pryor, Corros. Sci.2, 133 (1962).

    Google Scholar 

  17. M. A. Heine, D. S. Keir, and M. J. Pryor, J. Electrochem. Soc.112, 24 (1965).

    Google Scholar 

  18. J. C. Pivin, C. Roques-Carmes, and G. Slodzian, Int. J. Mass. Spectrom. Ion Phys.26, 219 (1978).

    Google Scholar 

  19. M. L. Yu and W. Reuter, J. Appl. Phys.52, 1489 (1981).

    Google Scholar 

  20. M. Van Craen, P. Van Espen, and F. Adams, Nucl. Instrum. Meth.191, 313 (1981).

    Google Scholar 

  21. R. T. Foley and T. H. Nguyen, J. Electrochem. Soc.129, 464 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Craen, M., Van Beek, L. Study of corrosion phenomena of aluminium bond wire in integrated circuits using several surface- and microanalytical techniques. Mikrochim Acta 82, 1–17 (1984). https://doi.org/10.1007/BF01202157

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01202157

Keywords

Navigation