Skip to main content
Log in

Ambulatory dispersal behavior ofNeoseiulus fallacis (Acarina: Phytoseiidae) in relation to prey density and temperature

  • Published:
Experimental & Applied Acarology Aims and scope Submit manuscript

Abstract

Ambulatory dispersal behavior ofNeoseiulus fallacis (Garman) was studied in the laboratory to evaluate within-plant movement in relation to temperature and prey density. Adult femaleN. fallacis were confined in 2.5-cm-diameter arenas on the abaxial surface of excised corn leaves. Four temperatures (23, 28, 33, and 39° C) and prey densities ranging from 0 to 55 spider mite eggs per cm2 were used. The walking paths of these mites were traced, digitized and used to calculate turning angles, walking speeds and turning rates. A computer simulation of walking behavior used this information to model mite ambulatory behavior and predict dispersal rates.Neoseiulus fallacis behavior while on whole corn leaves was quantified to verify the results of the simulation. The results showed thatN. fallacis will follow a leaf or arena edge (edge-walking) at all temperatures and prey densities. In addition, this behavior was used to the exclusion of the other types of behavior such as resting, and random-walk type search when prey egg density was less than 4 eggs per cm2. The exclusion of edge-walking behavior from the model caused the model to underestimate substantially the dispersal rates leaves. These data suggest that there are at least two recognizable types of ambulatory search used byN. fallacis—the random-walk type, which is used when prey density is high (searching within prey patches), and the edge-walking behavior, which is used when prey density is low. This behavior allows the mite to travel rapidly from leaf to leaf in search of new prey patches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anonymous, 1985a. Turbo Pascal Version 3.0 References Manual (1st edition). Borland International, Scotts Valley, CA, 376 pp.

  • Anonymous, 1985b. SAS User's Guide: Statistics, Version 5. SAS Institute, Cary, NC, 956 pp.

  • Berstein, C., 1984. Prey and predator emigration responses in the acarine systemTetranychus urticae-Phytoseiulus persimilis. Oecologia, 61: 134–142.

    Google Scholar 

  • Berstein, C., 1985. A similation model for an acarine predator-prey system (Phytoseiulus persimilis-Tetranychus urticae). J. Anim. Ecol., 54: 375–389.

    Google Scholar 

  • Berry, J.S., 1988. Dispersal and population simulation model of spider mites and a phytoseiid predator in the corn plant microenviroment. Ph.D. dissertation, Univ. Nebraska, Lincoln, 169 pp.

    Google Scholar 

  • Eveleigh, E.S. and Chant, D.A., 1982a. Experimental studies on acarine predator-prey interactions: the effects of predator density on prey consumption, predator searching efficiency and functional response to prey density (Acarina: Phytoseiidae). Can. J. Zool., 60: 611–629.

    Google Scholar 

  • Eveleigh, E.S. and Chant, D.A., 1982b. Experimental studies on acarine predator-prey interactions: the response of predators to prey distribution in a homogenous area (Acarina: Phytoseiidae). Can. J. Zool., 60:639–647.

    Google Scholar 

  • Eveleigh, E.S. and Chant, D.A., 1982c. Experimental studies on acarine predator-prey interactions: the distribution of the search effort and the functional and numerical responses of predators in a patch environment (Acarina: Phytoseiidae). Can. J. Zool., 60: 3001–3009.

    Google Scholar 

  • Eveleigh, E.S. and Chant, D.A., 1982d. The searching behaviour of two species of phytoseiid mites,Phytoseiulus persimilis Athias-Henriot and distribution of prey in a homogeneous area (Acarina: Phytoseiidae). Can. J. Zool., 60: 648–658.

    Google Scholar 

  • Everson, P., 1980. The relative activity and functional response ofPhytoseiulus persimilis (Acarina: Phytoseiidae) andTetranychus urticae (Acarina: Tetranychidae): the effect of temperature. Can. Entomol., 112: 17–24.

    Google Scholar 

  • Franz, H.G., 1974. The functional response to prey density in an acarine system. PUDOC, Wageningen, Simul. Monogr., 143 pp.

    Google Scholar 

  • Hassel, M.P. and Southwood, T.R.E., 1978. Foraging strategies of insects. Annu. Rev. Ecol. Syst., 9: 75–98.

    Google Scholar 

  • Heintz, J.C., 1988. Influences of temperature and humidity on egg development rate, consumption and fecundity of the predatory mite,Neoseiulus fallacis (Garman). M.S. Thesis, Univ. of Nebraska, Lincoln, 53 pp.

    Google Scholar 

  • Hislop, R.G. and Prokopy, J., 1981. Mite predator responses to prey and predator-emitted stimuli. J. Chem. Ecol., 7: 895–904.

    Google Scholar 

  • Hoy, M.A. and Smilanick, J.M., 1981. Non-random prey location by the phytoseiid predatorMetaseiulus occidentalis: differential responses to several spider mite species. Entomol. Exp. Appl. 29: 241–253.

    Google Scholar 

  • Huffaker, C.B., Shea, K.P. and Herman, K.P., 1963. Experimental studies on predation: complex dispersion and levels of food in an acarine predatory-prey interaction. Hilgardia, 34: 305–330.

    Google Scholar 

  • Johnson, D.T. and Croft, B.A., 1976. Laboratory study of the dispersal behavior ofAmblyseius fallacis (Acarina: Phytoseiidae). Ann. Entomol. Soc. Am., 69: 1019–1023.

    Google Scholar 

  • Johnson, D.T. and Croft, B.A., 1979. Factors affecting the dispersal ofAmblyseius fallacis in an apple tree ecosystem. In: J.G. Rodriguez (Editor), Recent Advances in Acarology, Vol. 1. Academic, New York, pp. 477–483.

    Google Scholar 

  • Marse, K. and Roberts, S.D., 1983. Implementing a portable FORTRAN uniform (0,1) generator. Simulation, October: 135–139.

    Google Scholar 

  • Mitchell, R., 1973. Growth and population dynamics of a spider mite (Tetranychus urticae K., Acarina: Tetranychidae). Ecology, 54: 1439–1355.

    Google Scholar 

  • Mori, H. and Chant, D.A., 1966. The influence of prey density, relative humidity, and starvation on the predacious behavior ofPhytoseiulus persimilis Athias-Henriot (Acarina: Phytoseiidae). Can. J. Zool., 44: 483–491.

    Google Scholar 

  • Mueller-Beilschmidt, D. and Hoy, M.A., 1987. Activity levels of genetically manipulated and wild stains ofMetaseiulus occidentalis (Nesbitt) (Acarina: Phytoseiidae) compared as a method to assay quality. Hilgardia, 55: 1–23.

    Google Scholar 

  • Nachman, G., 1987. Systems analysis of acarine predator-prey interactions. I. A stochastic simulation model of spatial processes. J. Anim. Ecol., 56: 247–265.

    Google Scholar 

  • Penman, D.R. and Chapman, R.B., 1980. Effect of temperature and humidity on the locomotory activity ofTetranychus urticae (Acarina: Tetranychidae),Typhlodromus occidentalis andAmblyseius fallacis (Acarina: Phytoseiidae). Acta Oecol. Oecol. Appl., 1: 259–264.

    Google Scholar 

  • Rabbinge, R., 1976. Biological control of fruit-tree red spider mite. PUDOC, Wagenigen, Simul. Monogr. 228 pp.

    Google Scholar 

  • Sabelis, M.W., 1981. Biological control of two-spotted spider mites using phytoseiid predators. Part 1: Modelling the predator-prey interaction at the individual level. PUDOC, Wageningen, Agric. Res. Rep. 910, 242 pp.

    Google Scholar 

  • Sabelis, M.W. and Dicke, M., 1985. Long-range dispersal and searching behaviour. In: W. Helle and M.W. Sabelis (Editors), Spider Mites, Their Biology, Natural Enemies and Control, Vol. B. Elsevier, Amsterdam, pp. 141–159.

    Google Scholar 

  • Sabelis, M.W. and Laane, W.E.M., 1986. Regional dynamics of spider-mite populations that become extinct locally because of food source depletion and predation by phytoseiid mites (Acarina: Tetranychidae, Phytoseiidae). In: O. Diekmann and J.A.J. Metz (Editors), Dynamics of Physiologically Structured Populations. Springer, New York, pp. 1–31.

    Google Scholar 

  • Sabelis, M.W. and van de Baan, H.E., 1983. Location of distant spider mite colonies by phytoseiid predators: Demonstration of specific kairomones emitted byTetranychus urticae andPanonychus ulmi. Entomol. Exp. Appl., 33: 303–314.

    Google Scholar 

  • Sabelis, M.W., Vermaat, J.E. and Groeneveld, A., 1984. Arrestment responses of the phytoseiid mite,Phytoseiulus persimilis, to steep odour gradients of a kairomene. Physiol. Entomol., 9: 437–446.

    Google Scholar 

  • Sandness, J.N. and McMurtry, J.A., 1972. Prey consumption behavior ofAmblyseius largoensis in relation to hunger. Can. Entomol., 104; 461–470.

    Google Scholar 

  • Snedecor, G.W. and Cochran, W.G., 1969. Statistical Methods, 6th edition. Iowa State Univ. Press, Ames, 593 pp.

    Google Scholar 

  • Takafiju, A., 1977. The effect of the rate of successful dispersal of a phytoseiid mite,Phytoseiulus persimilis Athias-Henriot (Acarina: Phytoseiidae) on the persistence in the interactive system between the predator and its prey. Res. Popul. Ecol., 18: 210–222.

    Google Scholar 

  • Toole, J.L., Norman, J.M., Holtzer, T.O. and Perring, T.M., 1984. Simulating Banks grass mite (Acari: Tetranychidae) population dynamics as a subsystem of crop canopy-microenvironment model. Environ. Entomol., 13: 329–337.

    Google Scholar 

  • Weiss, G.H., 1983. Random walks and their applications. Am. Sci., 71: 65–71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berry, J.S., Holtzer, T.O. Ambulatory dispersal behavior ofNeoseiulus fallacis (Acarina: Phytoseiidae) in relation to prey density and temperature. Exp Appl Acarol 8, 253–274 (1990). https://doi.org/10.1007/BF01202136

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01202136

Keywords

Navigation