Water balance and humidity requirements of house dust mites

Abstract

The house dust mites,Dermatophagoides farinae, D. pteronyssinus andEuroglyphus maynei, are prevalent in homes in humid geographical areas throughout the world. These mites thrive in humid environments in human dwellings where there is no liquid water to drink. However, their bodies contain 70–75% water by weight, which must be maintained in order to reproduce. Their primary source of water is water vapor which is actively extracted from unsaturated air. At relative humidities above 65–70%, adequate amounts of water can be extracted from unsaturated air to compensate for that lost by all avenues. Active uptake is associated with ingestion of a hyperosmotic solution which is secreted by the supracoxal glands. Active mites do not survive longer than 6–11 days at RHs ≤50%. They survive extended dry periods by forming a desiccation-resistant protonymphal stage which can survive for months at RHs below the critical humidity for active stages. Feeding rate and allergen production is directly influenced by RH. Mites feed, multiply, and produce more fecal matter at higher RHs than at lower ones.

This is a preview of subscription content, access via your institution.

References

  1. Andersen, A., 1988. Population growth and developmental stages of the house dust mite,Dermatophagoides pteronyssinus (Acari: Pyroglyphidae). J. Med. Entomol., 25: 370–373.

    PubMed  Google Scholar 

  2. Arlian, L.G., 1975a. Water exchange and effect of water vapor activity on metabolic rate in the dust mite,Dermatophagoides. J. Insect Physiol., 21: 1439–1442.

    PubMed  Google Scholar 

  3. Arlian, L.G., 1975b. Dehydration and survival of the European house dust mite,Dermatophagoides pteronyssinus. J. Med. Entomol., 12: 437–442.

    PubMed  Google Scholar 

  4. Arlian, L.G., 1976. Mites and house dust allergy. J. Asthma Res., 13(4): 165–172.

    PubMed  Google Scholar 

  5. Arlian, L.G., 1977. Humidity as a factor regulating feeding and water balance of house dust mites,Dermatophagoides farinae andD. pteronyssinus (Acari: Pyroglyphidae). J. Med. Entomol., 14: 484–488.

    PubMed  Google Scholar 

  6. Arlian, L.G., 1979. Significance of passive sorption of atmospheric water vapor and feeding in water balance of the rice weevil,Sitophilus oryzae. Comp. Biochem. Physiol., 62A: 725–733.

    Google Scholar 

  7. Arlian, L.G., 1989. Biology and ecology of house dust mites,Dermatophagoides spp. andEuroglyphus spp. Immunol. Allergy Clin. N. Am., 9: 339–356.

    Google Scholar 

  8. Arlian, L.G. and Eckstrand, I.A., 1975. Water balance inDrosophila pseudoobscura, and its ecological implications. Ann. Entomol. Soc. Am., 68: 827–832.

    Google Scholar 

  9. Arlian, L.G. and Staiger, T.E., 1979. Water balance in the semiaquatic beetle,Peltodytes muticus. Comp. Biochem. Physiol., 62A: 1041–1047.

    Google Scholar 

  10. Arlian, L.G. and Veselica, M.M., 1979. Review: Water balance in insects and mites. Comp. Biochem. Physiol., 64A: 191–200.

    Google Scholar 

  11. Arlian, L.G. and Veselica, M.M., 1981a. Re-evaluation of the humidity requirements of the house dust miteDermatophagoides farinae (Acari: Pyroglyphidae). J. Med. Entomol., 18: 351–352.

    Google Scholar 

  12. Arlian, L.G. and Veselica, M.M., 1981b. Effect of temperature on the equilibrium body water mass in the miteDermatophagoides farinae. Physiol. Zool., 54: 393–399.

    Google Scholar 

  13. Arlian, L.G. and Veselica, M.M., 1982. Relationship between transpiration rate and temperature in the miteDermatophagoides farinae. Physiol. Zool., 55: 344–354.

    Google Scholar 

  14. Arlian, L.G. and Wharton, G.W., 1974. Kinetics of active and passive components of water exchange between the air and a mite,Dermatophagoides farinae. J. Insect Physiol., 20: 1063–1077.

    PubMed  Google Scholar 

  15. Arlian, L.G., Bernstein, I.L. and Gallagher, J.S., 1982. The prevalence of house dust mites,Dermatophagoides spp., and associated environmental conditions in homes in Ohio. J. Allergy Clin. Immunol., 69: 527–532.

    PubMed  Google Scholar 

  16. Arlian, L.G., Woodford, P.J., Bernstein, I.L., et al., 1983. Seasonal population structure of house dust mites,Dermatophagoides spp. (Acari: Pyroglyphidae). J. Med. Entomol., 20: 99–102.

    PubMed  Google Scholar 

  17. Arlian, L.G., Rapp, C.M. and Ahmed, S.G., 1990. Development ofDermatophagoides pteronyssinus (Acari: Pyroglyphidae). J. Med. Entomol., 27: 1035–1040.

    PubMed  Google Scholar 

  18. Boudreaux, H.B., 1958. The effect of relative humidity on egg-laying, hatching and survival in various spider mites. J. Insect Physiol., 2: 65–72.

    Google Scholar 

  19. Brandt, R.L. and Arlian, L.G., 1976. Mortality of house dust mites,Dermatophagoides farinae andD. pteronyssinus, exposed to dehydrating conditions or selected pesticides. J. Med. Entomol., 13: 327–331.

    PubMed  Google Scholar 

  20. Brody, A.R. and Wharton, G.W., 1970.Dermatophagoides farinae: ultrastructure of lateral opisthosomal dermal glands. Trans. Am. Microbiol. Soc., 89: 499–513.

    Google Scholar 

  21. Brody, A.R., McGrath, J.C. and Wharton, G.W., 1972.Dermatophagoides farinae: the digestive system: J.N.Y. Entmol. Soc., 80: 152–177.

    Google Scholar 

  22. Brody, A.R., McGrath, J.C. and Wharton, G.W., 1976.Dermatophagoides farinae: the supracoxal glands. J.N.Y. Entomol. Soc., 84: 34–47.

    Google Scholar 

  23. Carswell, F., Robinson, D.W., Oliver, J., et al., 1982. House dust mites in Bristol. Clin. Allergy, 12: 533–545.

    PubMed  Google Scholar 

  24. Cross, H.F. and Wharton, G.W., 1964. A comparison of the number of tropical rat mites and tropical fowl mites that fed at different temperatures. J. Econ. Entomol., 57: 439–443.

    Google Scholar 

  25. Cutcher, J., 1973. The critical equilibrium activity of nonfeedingTyrophagus putrescentiae (Acarina: Acaridae). Ann. Entomol. Soc. Am., 66: 609–611.

    Google Scholar 

  26. Devine, T.L., 1969. A systematic analysis of the exchange of water between a miteLaelaps echidnina and the surrounding vapor. Ph.D. Dissertation, Ohio State University, Columbus, OH, 79 pp.

    Google Scholar 

  27. Devine, T.L., 1977. Incorporation of tritium from water into tissue components of the booklouseLiposcelis bostrychophilus J. Insect Physiol., 23: 1315–1321.

    Google Scholar 

  28. Devine, T.L., 1982. The dynamics of body water in the booklouse,Liposcelis bostrychophilus (Badonnel). J. Exp. Zool., 222: 335–351.

    Google Scholar 

  29. Devine, T. and Wharton, G.W., 1973. Kinetics of water exchange between a mite,Laelaps echidnina, and the surrounding air. J. Insect Physiol., 19: 243–254.

    PubMed  Google Scholar 

  30. Domrow, R., 1970. Seasonal variation in numbers of house-dust mite in Brisbane. Med. J. Aust., 2: 1248–1250.

    PubMed  Google Scholar 

  31. Dusbábek, F., 1975. Population structure and dynamics of the house dust miteDermatophagoides farinae (Acarina: Pyroglyphidae) in Czechoslovakia. Folia Parasitol. (Praha), 22: 219–231.

    Google Scholar 

  32. Ellingsen, I.J., 1974. Comparison of active and quiescent protonymphs of the American housedust mite. Ph.D. Dissertation, Ohio State University, Columbus, OH, 82 pp.

    Google Scholar 

  33. Ellingsen, I.J., 1975. Permeability to water in different adaptive phases of the same instar in the American house dust mite. Acarologia, 17: 734–744.

    Google Scholar 

  34. Ellingsen, I.J., 1978. Oxygen consumption in active and quiescent protonymphs of the American house dust mite. J. Insect Physiol., 24: 13–16.

    Google Scholar 

  35. Furumizo, R.T., 1975. Laboratory observations on the life history and biology of the American house dust miteDermatophagoides farinae (Acarina: Pyroglyphidae). Calif. Vector Views, 22: 49–60.

    Google Scholar 

  36. Furumizo, R.T., 1978. Seasonal abundance ofDermatophagoides farinae Hughes 1961 (Acarina: Pyroglyphidae) in house dust in southern California. Calif. Vector Views, 25: 13–19.

    Google Scholar 

  37. Hart, B.J. and Fain, A., 1988. Morphological and biological studies of medically important housedust mites. Acarologia, 19: 285–295.

    Google Scholar 

  38. Hughes, A.M., 1976. The mites of stored food and houses. Ministry of Agriculture, Fisheries and Food, Her Majesty's Stationary Office, London, 400 pp.

    Google Scholar 

  39. Knülle, W., 1965. Die Sorption und Transpiration des Wasserdampfes bei der Mehlmilbe (Acarus siro L.). Z. Vergl. Physiol., 49: 586–604.

    Google Scholar 

  40. Knülle, W., 1967. Significance of fluctuating humidities and frequency of blood meals on the survival of the spiny rat mite,Echinolaelaps echidninus (Berlese). J. Med. Entomol., 4: 322–325.

    PubMed  Google Scholar 

  41. Knülle, W., 1984. Water vapor uptake in mites and insects: an ecophysiological and evolutionary perspective. Acarology, 6: 71–82.

    Google Scholar 

  42. Lang, J.D. and Mulla, M.S., 1978. Seasonal dynamics of house dust mites,Dermatophagoides spp., in homes in southern California. Environ. Entomol., 7: 281–286.

    Google Scholar 

  43. Larson, D.G., 1969. The critical equilibrium activity of adult females of the house dust mite,Dermatophagoides farinae Hughes. Ph.D. Thesis, Ohio State University, Columbus, OH, 35 pp.

    Google Scholar 

  44. Leupen, M.J. and Varekamp, H., 1966. Some constructional and physical considerations concerning the microclimatological conditions affecting growth of the house dust mite (Dermatophagoides). In: Proc. 5th Interasthma Congr. Utrecht. Pressa Trajectina, Utrecht, pp. 44–55.

    Google Scholar 

  45. Lustgraaf, B.V.D., 1978. Seasonal abundance of the xerophilic fungi and house-dust mites (Acarida: Pyroglyphidae) in mattress dust. Oecologia, 36: 81–91.

    Google Scholar 

  46. Murray, A.B. and Zuk, P., 1979. The seasonal variation in a population of house dust mites in a North American city. J. Allergy Clin. Immunol., 64: 266–269.

    PubMed  Google Scholar 

  47. Needham, G.R. and Teel, P.D., 1991. Off-host physiological ecology of ixodid ticks. Annu. Rev. Entomol., 36: 659–681.

    PubMed  Google Scholar 

  48. Rodriguez, J.G., 1954. Radiophosphorus in metabolism studies in the two-spotted spider mite. J. Econ. Entomol., 47: 514–517.

    Google Scholar 

  49. Rudolph, D. and Knülle, W., 1974. Site and mechanism of water vapour uptake from the atmosphere in ixodid ticks. Nature, 249: 84–85.

    PubMed  Google Scholar 

  50. Rudolph, D. and Knülle, W., 1978. Uptake of water vapour from the air: process, site and mechanism in ticks. In: K. Schmidt-Nielsen, L. Bolis and S.H.P. Maddrell (Editors), Comparative Physiology: Water, Ions and Fluid Mechanics. Cambridge University Press, Cambridge, pp. 97–113.

    Google Scholar 

  51. Rudolph, D. and Knülle, W., 1982. Novel uptake systems for atmospheric vapor among insects. J. Exp. Zool., 222: 321–334.

    Google Scholar 

  52. Spieksma, F.Th.M. and Spieksma-Boezeman, M.I.A., 1967. The mite fauna of house dust with particular reference to the house-dust miteDermatophagoides pteronyssinus (Trouessart, 1897) (Psoroptidae: Sarcoptiformes). Acarologia, 1: 226–241.

    Google Scholar 

  53. Spieksma, F.Th.M., Zuidema, P. and Leupen, M.H., 1971. High altitude and house-dust mites. Br. Med. J., 9: 82–84.

    Google Scholar 

  54. Toolson, E.C., 1980. Thermodynamic and kinetic aspects of water flux through the arthropod cuticle. J. Thermal Biol., 5: 1–6.

    Google Scholar 

  55. Van Bronswijk, J.E., 1973.Dermatophagoides pteronyssinus (Trouessart, 1897) in mattress and floor dust in a temperate climate (Acari: Pryoglyphiade). J. Med. Entomol., 10: 63–70.

    PubMed  Google Scholar 

  56. Van Bronswijk, J.E.M.H. and Sinha, R.N., 1971. Pyroglyphid mites (Acari) and house dust allergy. J. Allergy, 47: 31–52.

    PubMed  Google Scholar 

  57. Wharton, G.W., 1978. Uptake of water vapour by mites and mechanisms utilized by the acaridei. In: K. Schmidt-Nielsen, L. Bolis and S.H.P. Maddrell (Editors), Comparative Physiology: Water, Ions and Fluid Mechanics, Cambridge University Press, Cambridge, pp. 79–95.

    Google Scholar 

  58. Wharton, G.W., 1985. Water balance of insects. In: G.A. Kerkut and L.I. Gilbert (Editors), Comprehensive Insect Physiology, Biochemistry and Pharmacology. Pergamon, New York, NY, pp. 565–601.

    Google Scholar 

  59. Wharton, G.W. and Arlian, L.G., 1972. Utilization of water by terrestrial mites and insects. In: J.G. Rodriguez (Editor), Insect and Mite Nutrition. North Holland, Amsterdam, pp. 153–165.

    Google Scholar 

  60. Wharton, G.W. and Cross, H.F., 1957. Studies on the feeding habits of three species of laelaptid mites. J. Parasitol., 43: 45–50.

    PubMed  Google Scholar 

  61. Wharton, G.W. and Devine, T.L., 1968. Exchange of water between a mite,Laelaps echidnina, and the surrounding air under equilibrium conditions. J. Insect Physiol., 14: 1303–1318.

    PubMed  Google Scholar 

  62. Wharton, G.W. and Furumizo, R.T., 1977. Supracoxal gland secretions as a source of fresh water for Acaridei. Acarologia, 19: 112–116.

    Google Scholar 

  63. Wharton, G.W. and Richards, A.G., 1978. Water vapor exchange kinetics in insects and acarines. Annu. Rev. Entomol., 23: 309–328.

    Google Scholar 

  64. Wharton, G.W., Duke, K.M. and Epstein, H.M., 1979. Water and the physiology of house dust mites. Rec. Adv. Acarol., 1: 325–335.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Larry G. Arlian.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Arlian, L.G. Water balance and humidity requirements of house dust mites. Exp Appl Acarol 16, 15–35 (1992). https://doi.org/10.1007/BF01201490

Download citation

Keywords

  • Water Balance
  • Lost
  • Liquid Water
  • Feeding Rate
  • Adequate Amount