Bioscience Reports

, Volume 16, Issue 1, pp 1–10 | Cite as

On the relationship of thermodynamic parameters with the buried surface area in protein-ligand complex formation

  • Netai C. Singha
  • Namita Surolia
  • A. Surolia
Article
  • 12 Downloads

Abstract

Prediction of thermodynamic parameters of protein-protein and antigen-antibody complex formation from high resolution structural parameters has recently received much attention, since an understanding of the contributions of different fundamental processes like hydrophobic interactions, hydrogen bonding, salt bridge formation, solvent reorganization etc. to the overall thermodynamic parameters and their relations with the structural parameters would lead to rational drug design. Using the results of the dissolution of hydrocarbons and other model compounds the changes in heat capacity (ΔCp), enthalpy (ΔH) and entropy (ΔS) have been empirically correlated with the polar and apolar surface areas buried during the process of protein folding/unfolding and protein-ligand complex formation. In this regard, the polar and apolar surfaces removed from the solvent in a protein-ligand complex have been calculated from the experimentally observed values of changes in heat capacity (ΔCp) and enthalpy (ΔH) for protein-ligand complexes for which accurate thermodynamic and high resolution structural data are available, and the results have been compared with the x-ray crystallographic observations. Analyses of the available results show poor correlation between the thermodynamic and structural parameters. Probable reasons for this discrepancy are mostly related with the reorganization of water accompanying the reaction which is indeed proven by the analyses of the energetics of the binding of the wheat germ agglutinin to oligosaccharides.

Key words

Buried site ligand protein-ligand complex thermodynamic parameters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hibbits, K. A., Gill, D. S. and Willson, R. C. (1994)Biochemistry 33:3584–3590.Google Scholar
  2. 2.
    Kelly, R. F. and O'Connell, M. P. (1993)Biochemistry 32:6828–6835.Google Scholar
  3. 3.
    Kelly, R. F., O'Connell, M. P., Carter, P., Presta, L., Eigenbrot, C., Covarrubias, M., Snedecor, B., Bourell, J. H. and Vetterlein, D. (1992)Biochemistry 31:5434–5441.Google Scholar
  4. 4.
    Brummell, D. A., Sharma, V. P., Anand, N. N., Bilous, D., Dubuc, G., Michniewicz, J., MacKenzie, C. R., Sadowska, J., Sigurskjold, B. W., Sinnott, B., Young, N. M., Bundel, D. R. and Narang, S. A. (1993)Biochemistry 32:1180–1187.Google Scholar
  5. 5.
    Connelly, P. R. and Thompson, J. A. (1992)Proc. Natl. Acad. Sci., USA,89:4781–4785.Google Scholar
  6. 6.
    Bhat, T. N., Bentley, G. A., Boulot, G., Greene, M. A., Tello, D., Dall'Acqua, W., Souchon, H., Schwarz, F. P. and Mariuzza, R. A. (1994)Proc. Natl. Acad. Sci., USA,91:1089–1093.Google Scholar
  7. 7.
    Ysern, X., Fields, B. A., Bhat, T. N., Goldbaum, F. A., Dall'Acqua, W., Schwarz, F. P., Poljak, R. J. and Mariuzza, R. A. (1994)J. Mol. Biol. 234:496–500.Google Scholar
  8. 8.
    Murphy, K. P., Xie, D., Garcia, K. C., Amzel, L. M. and Freire, E. (1993)Proteins: Structure, Function and Genetics 15: 113–120.Google Scholar
  9. 9.
    Amit, A. G., Mariuzza, R. A., Phillips, S. E. V. and Poljak, R. J. (1986)Science,233:747–753.Google Scholar
  10. 10.
    Sheriff, S., Silverton, E. W., Padlon, E. A., Cohen, G. H., Smith-Gill, S. J., Finzel, B. C. and Davis, D. R. (1987)Proc. Natl. Acad. Sci., USA,84:8075–8079.Google Scholar
  11. 11.
    Padlon, E. A., Silverton, E. W., Sheriff, S., Cohen, G. H., Smith-Gill, S. J. and Davis, D. R. (1989)Proc. Natl. Acad. Sci., USA,86:5938–5942.Google Scholar
  12. 12.
    Bhat, T. N., Bentley, G. A., Fischmann, T. O., Boulot, G. and Poljak, R. J. (1990)Nature,347:483–485.Google Scholar
  13. 13.
    Bentley, G. A., Fischmann, T. O., Bhat, T. N., Boulot, G., Mariuzza, R. A., Phillips, S. E. V., Tello, D. and Poljak, R. J. (1991)J. Biol. Chem.,266:12915–12920.Google Scholar
  14. 14.
    Garcia, K. C., Ronco, P. M., Verroust, P. J., Brunger, A. T. and Amzel, L. M. (1992)Science,257:502–507.Google Scholar
  15. 15.
    Van Duyne, G. D., Standaert, R. F., Karplus, P. A., Schreiber, S. L. and Clardy, J. (1991)Science,252:839–842.Google Scholar
  16. 16.
    Van Duyne, G. D., Standaert, R. F., Karplus, P. A., Schreiber, S. L. and Clardy, J. (1991)J. Am. Chem. Soc.,131:7433–7434.Google Scholar
  17. 17.
    Baldwin, R. L. (1986)Proc. Natl. Acad. Sci., USA,63:8069–8072.Google Scholar
  18. 18.
    Anantharam, V., Patanjali, S. R., Swamy, M. J., Goldstein, I. J. and Surolia, A. (1986)J. Biol. Chem.,261:14621–14627.Google Scholar
  19. 19.
    Privalov, P. L. and Gill, S. J. (1988)Adv. Protein Chem.,39:191–234.Google Scholar
  20. 20.
    Murphy, K. P. and Freire, E. (1992)Adv. Protein Chem.,43: 313–361.Google Scholar
  21. 21.
    Wiseman, T., Williston, S., Brandt, J. F. and Lin, L. N.Anal. Biochem.,179:131–137.Google Scholar
  22. 22.
    Ramakumar, R., Surolia, A. and Podder, S. K. (1995)Biochem. J.,308:237–241.Google Scholar
  23. 23.
    Yang, C. P. (1990) Omega Data in Origin p66, Microcal Inc. Northampton, MA USA.Google Scholar
  24. 24.
    Murphy, K. P., Bhakuni, V., Xie, D. and Freire, E. (1992)J. Mol. Biol.,227:293–306.Google Scholar
  25. 25.
    Murphy, K. P., Privalov, P. L. and Gill, S. J. (1990)Science,247:559–561.Google Scholar
  26. 26.
    Varadarajan, R., Connelly, P. R., Strutevant, J. M. and Richards, F. M. (1992)Biochemistry,31:1421–1426.Google Scholar
  27. 27.
    Livanh, O., Bayer, E. A., Wilmek, M. and Sussman, J. L. (1993)Proc. Natl. Acad. Sci. USA,90:5076–5080.Google Scholar
  28. 28.
    Hard, T., Kellenbach, E., Boelens, R., Maler, B. A., Dahlman, K., Freedman, L. P., Carlstedt-Duke, J., Yamamoto, K. R., Gustafsson, J-Å. and Kaptein, R. (1990)Science,249:157–160.Google Scholar
  29. 29.
    Hard, T., Kellenbach, E., Boelens, R., Kaptein, R., Dahlman, K., Carlstedt-Duke, J., Freedman, L. P., Maler, B. A., Hyde, E. I., Gustafsson, J Å., Yamamoto, K. R. and Kaptein, R. (1990)Biochemistry,29:9015–9023.Google Scholar
  30. 30.
    Quiocho, F. A., Wilson, D. K. and Vyas, N. K. (1989)Nature,340:404–407.Google Scholar
  31. 31.
    James, M. N. G., Sielecke, A. R., Brayer, G. D., Delbaere, L. T. J. and Bauer, C. A. (1980)J. Mol. Biol.,144:43–88.Google Scholar
  32. 32.
    Bolognesi, M., Gatti, G., Menegatti, E., Guarneri, M., Marquart, M., Papamokos, E. and Huber, R. (1982)J. Mol. Biol.,162:839–868.Google Scholar
  33. 33.
    Fujinaga, M., James, M. N. G. (1987)J. Mol. Biol.,195:373–396.Google Scholar
  34. 34.
    McPhalen, C. A. and James, M. N. G. (1988)Biochemistry,27:6582–6598.Google Scholar
  35. 35.
    Puri, K. D. and Surolia, A. (1994)Pure and Appl. Chem.,66:497–502.Google Scholar
  36. 36.
    Bains, G., Lee, R. T., Lee, Y. C. and Freire, E. (1992)Biochemistry,31:12624–12628.Google Scholar
  37. 37.
    Schwarz, F. P., Puri, K. D. and Surolia, A. (1991)J. Biol Chem.,266: 24344–24350.Google Scholar
  38. 38.
    Schwarz, F. P., Puri, K. D., Bhat, R. G. and Surolia, A. (1993)J. Biol. Chem.,268:7668–7667.Google Scholar
  39. 39.
    Kornblatt, J. A. and Hoa, G. H. B. (1990)Biochemistry,29:9370–9376.Google Scholar
  40. 40.
    Colombo, M. F., Ran, D. C. and Parsegian, V. A. (1992)Science,256:655–659.Google Scholar
  41. 41.
    Rand, R. P., Fuller, N. L., Butko, P., Francis, G. and Nicholls, P. (1993)Biochemistry,32:5925–5929.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Netai C. Singha
    • 1
  • Namita Surolia
    • 2
  • A. Surolia
    • 1
  1. 1.Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
  2. 2.Jawaharlal Nehru Centre for Advanced Scientific Research JakkurBangaloreIndia

Personalised recommendations