Projective plane and Möbius band obstructions


LetS be a compact surface with possibly non-empty boundary ϖS and letG be a graph. LetK be a subgraph ofG embedded inS such that ϖSK. Anembedding extension ofK toG is an embedding ofG inS which coincides onK with the given embedding ofK. Minimal obstructions for the existence of embedding extensions are classified in cases whenS is the projective plane or the Möbius band (for several “canonical” choices ofK). Linear time algorithms are presented that either find an embedding extension, or return a “nice” obstruction for the existence of extensions.

This is a preview of subscription content, access via your institution.


  1. [1]

    D. Archdeacon: A Kuratowski Theorem for the projective plane,J. Graph Theory,5 (1981), 243–246.

    Google Scholar 

  2. [2]

    D. Archdeacon, P. Huneke: A Kuratowski theorem for nonorientable surfaces,J. Combin. Theory Ser. B,46 (1989), 173–231.

    Google Scholar 

  3. [3]

    N. Chiba, T. Nishizeki, S. Abe, T. Ozawa: A linear algorithm for embedding planar graphs usingPQ-trees,J. Comput. System Sci.,30 (1985), 54–76.

    Google Scholar 

  4. [4]

    S. A., Cook, R. A. Reckhow: Time bounded random access machines,J. Comput. Syst. Sci.,7 (1976), 354–375.

    Google Scholar 

  5. [5]

    I. S. Filotti, G. L. Miller, J. Reif: On determining the genus of a graph inO(v O(g)) steps, in:Proc. 11th Ann. ACM STOC, Atlanta, Georgia (1979), 27–37.

  6. [6]

    H. Glover, J. P. Huneke, C. S. Wang: 103 graphs that are irreducible for the projective plane,J. Combin. Theory, Ser. B,27 (1979), 332–370.

    Google Scholar 

  7. [7]

    J. L. Gross, T. W. Tucker:Topological graph theory, Wiley-Interscience, New York, 1987.

    Google Scholar 

  8. [8]

    J. E. Hopcroft, R. E. Tarjan: Dividing a graph into triconnected components,SIAM J. Comput.,2 (1973), 135–158.

    Google Scholar 

  9. [9]

    J. E. Hopcroft, R. E. Tarjan: Efficient planarity testing,J. ACM,21 (1974), 549–568.

    Google Scholar 

  10. [10]

    M. Juvan, J. Marinček, B., Mohar: Elimination of local bridges,Math. Slovaca, in press.

  11. [11]

    M. Juvan, J. Marinček, B. Mohar: Obstructions for simple embeddings, submitted.

  12. [12]

    M. Juvan, J. Marinček, B. Mohar: Embedding graphs in the torus, submitted.

  13. [13]

    M. Juvan, B. Mohar: Obstructions for 2-Möbius band embedding extension problem,SIAM J. Discrete Math.,10 (1997), 57–72.

    Google Scholar 

  14. [14]

    B. Mohar: Projective planarity in linear time,J. Algorithms,15 (1993), 482–502.

    Google Scholar 

  15. [15]

    B. Mohar: Obstructions for the disk and the cylinder embedding extension problems,Combin. Probab. Comput.,3 (1994), 375–406.

    Google Scholar 

  16. [16]

    B. Mohar: Universal obstructions for embedding extension problems, submitted.

  17. [17]

    B. Mohar: Embedding graphs in an arbitrary surface in linear time,Proc. 28th Ann. ACM STOC, Philadelphia, ACM Press, 1996, 392–397.

    Google Scholar 

  18. [18]

    B. Mohar: A linear time algorithm for embedding graphs in an arbitrary surface, submitted.

  19. [19]

    N. Robertson, P. D. Seymour: Graph minors. VIII. A Kuratowski theorem for general surfaces,J. Combin Theory, Ser. B,48 (1990), 255–288.

    Google Scholar 

  20. [20]

    N. Robertson, P. D. Seymour: Graph minors. IX. Disjoint crossed paths,J. Combin Theory, Ser. B,49 (1990), 40–77.

    Google Scholar 

  21. [21]

    P. D. Seymour: Disjoint paths in graphs,Discrete Math.,29 (1980), 293–309.

    Google Scholar 

  22. [22]

    Y. Shiloach: A polynomial solution to the undirected two paths problem,J. Assoc. Comput. Math.,27 (1980), 445–456.

    Google Scholar 

  23. [23]

    C. Thomassen: 2-linked graphs,Europ. J. Combin.,1 (1980), 371–378.

    Google Scholar 

  24. [24]

    W. T. Tutte:Connectivity of graphs, Univ. Toronto Press, Toronto, Ontario; Oxford Univ. Press, London, 1966.

    Google Scholar 

  25. [25]

    S. G. Williamson: Embedding graphs in the plane—algorithmic aspects,Ann. Discrete Math.,6 (1980), 349–384.

    Google Scholar 

  26. [26]

    S. G. Williamson: Depth-first search and Kuratowski subgraphs,J. ACM,31 (1984), 681–693.

    Google Scholar 

Download references

Author information



Additional information

Supported in part by the Ministry of Science and Technology of Slovenia, Research Project P1-0210-101-94.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mohar, B. Projective plane and Möbius band obstructions. Combinatorica 17, 235–266 (1997).

Download citation

Mathematics Subject Classification (1991)

  • 05C10
  • 68R10