Abstract
Fort=2,3 andk≥2t−1 we prove the existence oft−(n,k,λ) designs with independence numberC λ,k n (k−t)/(k−1) (ln n) 1/(k−1). This is, up to the constant factor, the best possible.
Some other related results are considered.
This is a preview of subscription content, access via your institution.
References
- [1]
T. Beth, D. Jungnickel, andH. Lenz:Design Theory, Cambridge University Press, Cambridge, 1986.
- [2]
M. de Brandes, andV. Rödl: Steiner triple systems with small maximal independent sets,Ars Combinatoria 17 (1984), 15–19.
- [3]
J. Brown, andV. Rödl: A Ramsey type problem concerning vertex colorings,J. Comb. Theory, Series B 52 (1991), 45–52.
- [4]
N. Eaton andV. Rödl: A canonical Ramsey theorem,Rand. Struc. Alg. 3 (1992), 427–444.
- [5]
P. Frankl, V. Rödl, andR. M. Wilson: The number of submatrices of a given type in a Hadamard matrix and related results,J. Comb. Theory, Series B 44 (1988), 317–328.
- [6]
Z. Füredi: Maximal independent subsets in Steiner systems and in planar sets,SIAM J. Disc. Math 4 (1991), 196–199.
- [7]
J. W. P. Hirschfeld:Projective Geometries over Finite Fields, Clarendon Press, Oxford, 1979.
- [8]
K. T. Phelps, andV. Rödl: Steiner triple systems with minimum independence number,Ars Combinat. 21 (1986), 167–172.
- [9]
V. Rödl, andE. Šiňajová Note on independent sets in Steiner systems,Random Structures and Algorithms 5 (1994), 183–190.
Author information
Affiliations
Additional information
Supported by NSF Grant DMS-9011850
Rights and permissions
About this article
Cite this article
Grable, D.A., Phelps, K.T. & Rödl, V. The minimum independence number for designs. Combinatorica 15, 175–185 (1995). https://doi.org/10.1007/BF01200754
Received:
Revised:
Issue Date:
Mathematics Subject Classification (1991)
- 05 B 05