Skip to main content
Log in

The minimum independence number for designs

  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

Fort=2,3 andk≥2t−1 we prove the existence oft−(n,k,λ) designs with independence numberC λ,k n (k−t)/(k−1) (ln n) 1/(k−1). This is, up to the constant factor, the best possible.

Some other related results are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Beth, D. Jungnickel, andH. Lenz:Design Theory, Cambridge University Press, Cambridge, 1986.

    Google Scholar 

  2. M. de Brandes, andV. Rödl: Steiner triple systems with small maximal independent sets,Ars Combinatoria 17 (1984), 15–19.

    Google Scholar 

  3. J. Brown, andV. Rödl: A Ramsey type problem concerning vertex colorings,J. Comb. Theory, Series B 52 (1991), 45–52.

    Google Scholar 

  4. N. Eaton andV. Rödl: A canonical Ramsey theorem,Rand. Struc. Alg. 3 (1992), 427–444.

    Google Scholar 

  5. P. Frankl, V. Rödl, andR. M. Wilson: The number of submatrices of a given type in a Hadamard matrix and related results,J. Comb. Theory, Series B 44 (1988), 317–328.

    Google Scholar 

  6. Z. Füredi: Maximal independent subsets in Steiner systems and in planar sets,SIAM J. Disc. Math 4 (1991), 196–199.

    Google Scholar 

  7. J. W. P. Hirschfeld:Projective Geometries over Finite Fields, Clarendon Press, Oxford, 1979.

    Google Scholar 

  8. K. T. Phelps, andV. Rödl: Steiner triple systems with minimum independence number,Ars Combinat. 21 (1986), 167–172.

    Google Scholar 

  9. V. Rödl, andE. Šiňajová Note on independent sets in Steiner systems,Random Structures and Algorithms 5 (1994), 183–190.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by NSF Grant DMS-9011850

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grable, D.A., Phelps, K.T. & Rödl, V. The minimum independence number for designs. Combinatorica 15, 175–185 (1995). https://doi.org/10.1007/BF01200754

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01200754

Mathematics Subject Classification (1991)

Navigation